A review of plasma-liquid interactions for nanomaterial synthesis

Over the past few decades, a new branch of plasma research, nanomaterial (NM) synthesis through plasma–liquid interactions (PLIs), has been developing rapidly, mainly due to the various, recently developed plasma sources operating at low and atmospheric pressures. PLIs provide novel plasma–liquid interfaces where many physical and chemical processes take place. By exploiting these physical and chemical processes, various NMs ranging from noble metal nanoparticles to graphene nanosheets can easily be synthesized. The currently rapid development and increasingly wide utilization of the PLI method has naturally lead to an urgent need for the presentation of a general review. This paper reviews the current status of research on PLIs for NM synthesis. The focus is on a comprehensive understanding of the synthesis process and perceptive opinions on current issues and future challenges in this field.

[1]  Elodie Boisselier,et al.  Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. , 2009, Chemical Society reviews.

[2]  H. Yoshida,et al.  Production of the hydrated electron in the radiolysis of water with helium ions , 1993 .

[3]  N. Sano,et al.  Controlled synthesis of carbon nanoparticles by arc in water method with forced convective jet , 2004 .

[4]  J. Brisset,et al.  Peroxynitrite: A Re-examination of the Chemical Properties of Non-thermal Discharges Burning in Air Over Aqueous Solutions , 2012, Plasma Chemistry and Plasma Processing.

[5]  D. Shindo,et al.  Carbon encapsulated iron carbide nanoparticles synthesized in ethanol by an electric plasma discharge in an ultrasonic cavitation field , 2006 .

[6]  D. Graves,et al.  Cold Atmospheric Plasma: Charged Species and Their Interactions With Cells and Tissues , 2008, IEEE Transactions on Plasma Science.

[7]  U. Parlitz,et al.  Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water , 1996 .

[8]  V. Švrček,et al.  Surface-engineered silicon nanocrystals. , 2013, Nanoscale.

[9]  V. Švrček,et al.  Photosensitive self-assembled nanoarchitectures containing surfactant-free Si nanocrystals produced by laser fragmentation in water , 2009 .

[10]  V. Klimov Semiconductor and Metal Nanocrystals , 2004 .

[11]  Rikizo Hatakeyama,et al.  Rapid synthesis of water-soluble gold nanoparticles with control of size and assembly using gas–liquid interfacial discharge plasma , 2012 .

[12]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine , 2003 .

[13]  Erich E. Kunhardt,et al.  Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas , 2000 .

[14]  T. Kaneko,et al.  Novel Gas-Liquid Interfacial Plasmas for Synthesis of Metal Nanoparticles , 2009 .

[15]  A. Yazdani,et al.  Pure iron nanoparticles prepared by electric arc discharge method in ethylene glycol , 2012 .

[16]  R. M. Sankaran,et al.  Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations , 2008 .

[17]  F. Endres,et al.  Plasma electrochemistry in ionic liquids: an alternative route to generate nanoparticles. , 2011, Physical chemistry chemical physics : PCCP.

[18]  Liliang Chen,et al.  Synthesis of Wurtzite-Type ZnMgS by the Pulsed Plasma in Liquid , 2011 .

[19]  C. Iwamoto,et al.  Onion-like carbon-encapsulated Co, Ni, and Fe magnetic nanoparticles with low cytotoxicity synthesized by a pulsed plasma in a liquid , 2012 .

[20]  Y. Horiike,et al.  An atmospheric-pressure microplasma jet source for the optical emission spectroscopic analysis of liquid sample , 2003 .

[21]  G. Frens Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions , 1973 .

[22]  Wflm Wilfred Hoeben,et al.  Pulsed corona-induced degradation of organic materials in water , 2000 .

[23]  Toshimasa Suzuki,et al.  A Facile Synthesis of AuAg Alloy Nanoparticles Using a Chemical Reaction Induced by Sputter Deposition of Metal onto Ionic Liquids , 2009 .

[24]  J. Janek,et al.  Employing plasmas as gaseous electrodes at the free surface of ionic liquids: deposition of nanocrystalline silver particles. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  N. Tanaka,et al.  Single-step synthesis of gold-silver alloy nanoparticles in ionic liquids by a sputter deposition technique. , 2008, Chemical communications.

[26]  Tao Zhang,et al.  Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. , 2008, Chemical communications.

[27]  Xinpei Lu,et al.  A Cold Plasma Jet Device With Multiple Plasma Plumes Merged , 2008, IEEE Transactions on Plasma Science.

[28]  E. Koretzky,et al.  Characterization of an atmospheric pressure plasma generated by a plasma torch array , 1998 .

[29]  G. Radnóczi,et al.  Continuous carbon nanotube production in underwater AC electric arc , 2003 .

[30]  Davide Mariotti,et al.  Perspectives on atmospheric-pressure plasmas for nanofabrication , 2011 .

[31]  A. Prowald,et al.  Interfacial electrochemistry and electrodeposition from some ionic liquids: In situ scanning tunneling microscopy, plasma electrochemistry, selenium and macroporous materials , 2011 .

[32]  S. Takashima,et al.  Preparation of Aqueous Dispersion of Titanium Dioxide Nanoparticles using Plasma on Liquid Surface , 2012 .

[33]  N. Sano,et al.  Characteristics of carbon nanoparticles synthesized by a submerged arc in alcohols, alkanes, and aromatics. , 2006, The journal of physical chemistry. B.

[34]  M. Ingram,et al.  Contact glow-discharge electrolysis , 1964 .

[35]  W. Borchard,et al.  Temperature depending light scattering measurements of aqueous gelatin and alginate solutions and their mixtures , 2002 .

[36]  Remote Plasma-Enhanced Chemical Vapour Deposition of Silicon Nitride at Atmospheric Pressure , 2002 .

[37]  J. Foster,et al.  Observations of electric discharge streamer propagation and capillary oscillations on the surface of air bubbles in water , 2011 .

[38]  Christophe Leys,et al.  Non-thermal plasmas in and in contact with liquids , 2009 .

[39]  T. Akiyama,et al.  Ripple formation on a nickel electrode during a glow discharge in a solution , 2012 .

[40]  F. Endres,et al.  Plasma electrochemistry in ionic liquids: from silver to silicon nanoparticles , 2014 .

[41]  Yongfeng Li,et al.  Plasma synthesis of nitrogen-doped porous graphene supporting Pd nanoparticles as a new catalyst for C–C coupling reactions , 2014 .

[42]  O. Takai,et al.  Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing , 2012, Nanotechnology.

[43]  O. Takai,et al.  Gold Nanoparticle Synthesis Using Three-Dimensionally Integrated Micro-Solution Plasmas , 2013 .

[44]  A. Manz,et al.  TECHNICAL NOTE: A miniaturized glow discharge applied for optical emission detection in aqueous analytes , 2002 .

[45]  Yongfeng Li,et al.  Plasma synthesis of Pd nanoparticles decorated-carbon nanotubes and its application in Suzuki reaction , 2013 .

[46]  N. Nakashima,et al.  Effects of Anions on Electrochemical Reactions of Silver Shells on Gold Nanorods , 2013 .

[47]  Seungho Cho,et al.  Morphology-Controlled Growth of ZnO Nanostructures Using Microwave Irradiation: from Basic to Complex Structures , 2008 .

[48]  N. Saito,et al.  A novel one-step synthesis of gold nanoparticles in an alginate gel matrix by solution plasma sputtering , 2014 .

[49]  Y. Fukunaka,et al.  Formation of FePt intermetallic compound nanoparticles by plasma-induced cathodic discharge electrolysis , 2010 .

[50]  Y. Masumoto,et al.  Semiconductor Quantum Dots , 2002 .

[51]  S. Nomura,et al.  Synthesis of zinc and zinc oxide nanoparticles from zinc electrode using plasma in liquid , 2011 .

[52]  Robin D. Rogers,et al.  Ionic Liquids--Solvents of the Future? , 2003, Science.

[53]  O. Takai,et al.  Synthesis process of gold nanoparticles in solution plasma , 2009 .

[54]  E. Mendis,et al.  Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. , 2005, Life sciences.

[55]  R. M. Sankaran,et al.  Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase , 2010 .

[56]  T. Akiyama,et al.  Synthesis of ZnO nanoflowers by solution plasma , 2011 .

[57]  Weixin Huang,et al.  Influence of Speciation of Aqueous HAuCl4 on the Synthesis, Structure, and Property of Au Colloids , 2009 .

[58]  Bruce R. Locke,et al.  Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water , 2011 .

[59]  Davide Mariotti,et al.  Microplasmas for nanomaterials synthesis , 2010 .

[60]  Pingyu Kuai,et al.  Selective oxidation of glucose to gluconic acid over argon plasma reduced Pd/Al2O3 , 2008 .

[61]  A. Fridman Plasma Chemistry: Frontmatter , 2008 .

[62]  S. Campbell,et al.  Plasma synthesis of single-crystal silicon nanoparticles for novel electronic device applications , 2004, physics/0410038.

[63]  Andrey L. Rogach,et al.  Semiconductor Nanocrystal Quantum Dots , 2008 .

[64]  T. Akiyama,et al.  Solution plasma synthesis of ZnO flowers and their photoluminescence properties , 2014 .

[65]  Bruce R. Locke,et al.  Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment , 2006 .

[66]  Daniel C. Harris,et al.  Quantitative Chemical Analysis , 1968, Nature.

[67]  M. Laroussi,et al.  Low-Temperature Plasmas for Medicine? , 2009, IEEE Transactions on Plasma Science.

[68]  A. Hickling,et al.  Electrochemical Processes in Glow Discharge at the Gas-Solution Interface , 1971 .

[69]  Camille Petit-Etienne,et al.  Open Air Deposition of SiO2 Films by an Atmospheric Pressure Line‐Shaped Plasma , 2005 .

[70]  O. Takai,et al.  Rapid Synthesis and Structural Characterization of Well-Defined Gold Clusters by Solution Plasma Sputtering , 2012 .

[71]  Ajay Kumar,et al.  Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour , 2013, Nature Communications.

[72]  A. Nozik Quantum dot solar cells , 2002 .

[73]  U. Cvelbar,et al.  Built-In Charges and Photoluminescence Stability of 3D Surface-Engineered Silicon Nanocrystals by a Nanosecond Laser and a Direct Current Microplasma , 2013 .

[74]  Qing-Song Wu,et al.  Formation of uniform CuO nanorods by spontaneous aggregation: Selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid-liquid phase arc discharge process. , 2005, The journal of physical chemistry. B.

[75]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[76]  Andrew deMello,et al.  Microscale reactors: nanoscale products. , 2004, Lab on a chip.

[77]  Z. Kiraly,et al.  Size-Selective Synthesis of Cubooctahedral Palladium Particles Mediated by Metallomicelles , 2003 .

[78]  M. Tokushige,et al.  Formation of Fine Ni Nanoparticle by Plasma-Induced Cathodic Discharge Electrolysis Using Rotating Disk Anode , 2010 .

[79]  H. Hongo,et al.  Formation of Sm-Co Intermetallic Compound Nanoparticles Based on Plasma-Induced Cathodic Discharge Electrolysis in Chloride Melt , 2011 .

[80]  R. K. Marcus,et al.  Role of powering geometries and sheath gas composition on operation characteristics and the optical emission in the liquid sampling-atmospheric pressure glow discharge , 2002 .

[81]  William G. Graham,et al.  Plasmas in liquids and some of their applications in nanoscience , 2011 .

[82]  K. Yong,et al.  A Review on Functionalized Gold Nanoparticles for Biosensing Applications , 2011 .

[83]  T. Kareem,et al.  Glow discharge plasma electrolysis for nanoparticles synthesis , 2012, Ionics.

[84]  Xu Gao,et al.  Size-controllable self-assembly of metal nanoparticles on carbon nanostructures in room-temperature ionic liquids by simple sputtering deposition , 2012 .

[85]  R. Feigelson,et al.  Electrowinning of Silicon from K 2SiF6 ‐ Molten Fluoride Systems , 1980 .

[86]  Zengliang Yu,et al.  Reduction and removal of aqueous Cr(VI) by glow discharge plasma at the gas-solution interface. , 2011, Environmental science & technology.

[87]  Yongfeng Li,et al.  Plasma synthesis of carbon nanotube-gold nanohybrids: efficient catalysts for green oxidation of silanes in water , 2014 .

[88]  F. Patolsky,et al.  Hydrazine/air direct-liquid fuel cell based on nanostructured copper anodes , 2012 .

[89]  Madhav Datta,et al.  Anodic dissolution of metals at high rates , 1993, IBM J. Res. Dev..

[90]  Peidong Yang,et al.  Shape Control of Colloidal Metal Nanocrystals , 2008 .

[91]  A. Kibbler,et al.  Electrochemical Nucleation and Growth of Silicon in Molten Fluorides , 1983 .

[92]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[93]  J. Brisset,et al.  Chemical Reactivity of Discharges and Temporal Post-Discharges in Plasma Treatment of Aqueous Media: Examples of Gliding Discharge Treated Solutions , 2008 .

[94]  N. Paape,et al.  Ligand Effects in SCILL Model Systems: Site‐Specific Interactions with Pt and Pd Nanoparticles , 2011, Advanced materials.

[95]  A. K. Agrawal,et al.  Electrodeposition of Silicon from Solutions of Silicon Halides in Aprotic Solvents , 1981 .

[96]  K. Harada,et al.  SYNTHESES OF AMINO ACIDS FROM ALIPHATIC AMINES BY CONTACT GLOW DISCHARGE ELECTROLYSIS , 1975 .

[97]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[98]  N. Tanaka,et al.  Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles , 2006 .

[99]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[100]  Manfred T. Reetz,et al.  Size-Selective Synthesis of Nanostructured Transition Metal Clusters , 1994 .

[101]  A. Yazdani,et al.  PREPARATION OF PURE COBALT NANOPARTICLES BY ELECTRIC ARC DISCHARGE METHOD IN ETHYLENE GLYCOL , 2013 .

[102]  Jun Kang,et al.  Synthesis of structure-controlled carbon nano spheres by solution plasma process , 2013 .

[103]  Furukawa,et al.  Quantum size effects on the optical band gap of microcrystalline Si:H. , 1988, Physical review. B, Condensed matter.

[104]  S. Uchida,et al.  Chemical reactions in liquid induced by atmospheric-pressure dc glow discharge in contact with liquid , 2014 .

[105]  I. Alexandrou,et al.  Structure of carbon onions and nanotubes formed by arc in liquids. , 2004, The Journal of chemical physics.

[106]  B. Korgel,et al.  The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[107]  Szu-Han Wu,et al.  Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. , 2004, Journal of colloid and interface science.

[108]  P. Lukeš,et al.  Generation of ozone by pulsed corona discharge over water surface in hybrid gas–liquid electrical discharge reactor , 2005 .

[109]  Shoji Furukawa,et al.  Three-Dimensional Quantum Well Effects in Ultrafine Silicon Particles , 1988 .

[110]  Chang‐jun Liu Size-Controlled Synthesis of Colloidal Gold Nanoparticles at Room Temperature Under the Influence of Glow Discharge , 2009, Nanoscale research letters.

[111]  Krishnan Rajeshwar,et al.  Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement , 1997 .

[112]  M. Beck,et al.  Formation of polycyclic aromatic compounds upon electric discharges in liquid toluene , 1992 .

[113]  S. Kuwabata,et al.  Composition-dependent electrocatalytic activity of AuPd alloy nanoparticles prepared via simultaneous sputter deposition into an ionic liquid. , 2013, Physical chemistry chemical physics : PCCP.

[114]  S. Nomura,et al.  Continuous synthesis of magnesium-hydroxide, zinc-oxide, and silver nanoparticles by microwave plasma in water , 2011 .

[115]  Masaru Hori,et al.  Ultrahigh-Speed Synthesis of Nanographene Using Alcohol In-Liquid Plasma , 2012 .

[116]  T. Kaneko,et al.  Synthesis of monodispersed nanoparticles functionalized carbon nanotubes in plasma-ionic liquid interfacial fields. , 2010, Chemical communications.

[117]  Uwe R. Kortshagen,et al.  Plasma‐Assisted Synthesis of Silicon Nanocrystal Inks , 2007 .

[118]  R. Hatakeyama,et al.  Structural and reactive kinetics in gas–liquid interfacial plasmas , 2011 .

[119]  T. Nozaki,et al.  Synthesis and oxidation of luminescent silicon nanocrystals from silicon tetrachloride by very high frequency nonthermal plasma , 2011, Nanotechnology.

[120]  M. Eikerling,et al.  Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. , 2004, Faraday discussions.

[121]  T. Kaneko,et al.  Efficient Synthesis of Gold Nanoparticles Using Ion Irradiation in Gas–Liquid Interfacial Plasmas , 2009 .

[122]  P. Bruggeman,et al.  Time dependent optical emission spectroscopy of sub-microsecond pulsed plasmas in air with water cathode , 2009 .

[123]  V. Smirnov,et al.  Wide Gap Microcrystalline Silicon Oxide Emitter for a-SiOx:H/c-Si Heterojunction Solar Cells , 2013 .

[124]  R. Hatakeyama,et al.  Gas–liquid interfacial plasmas: basic properties and applications to nanomaterial synthesis , 2009 .

[125]  K. Harada,et al.  Syntheses of amino acids from aliphatic carboxylic acid by glow discharge electrolysis , 1974, Nature.

[126]  Wei Ji,et al.  Synthesis, Characterization, and Nonlinear Optical Properties of Copper Nanoparticles , 1997 .

[127]  James L. Walsh,et al.  Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment , 2009 .

[128]  S. Nomura,et al.  A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires , 2007, Nanotechnology.

[129]  Sarunya Bangsaruntip,et al.  Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. , 2002, Journal of the American Chemical Society.

[130]  C. Iwamoto,et al.  Magnetite Nanoparticles Synthesized Using Pulsed Plasma in Liquid , 2013 .

[131]  Zhehao Wei,et al.  Synthesis of monodisperse gold nanoparticles in ionic liquid by applying room temperature plasma , 2011 .

[132]  Abdul Ghaffar,et al.  Water purification by electrical discharges , 2001 .

[133]  Lan-sun Zheng,et al.  Preparation and self-assembly of copper nanoparticles via discharge of copper rod electrodes in a surfactant solution: a combination of physical and chemical processes , 2004 .

[134]  O. Takai,et al.  Redox reactions in liquid plasma during iron oxide and oxide-hydroxide nanoparticles synthesis , 2011 .

[135]  I. Suni,et al.  Aqueous, Room Temperature Electrochemical Deposition of Compact Si Films , 2011 .

[136]  P. Mezei,et al.  Development of open-air type electrolyte-as-cathode glow discharge-atomic emission spectrometry for determination of trace metals in water , 2000 .

[137]  Gaston Charlot Les réactions chimiques en solution : l'analyse qualitative minérale , 1969 .

[138]  M. Shao,et al.  Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. , 2006, Journal of the American Chemical Society.

[139]  T. Akiyama,et al.  Synthesis of copper/copper oxide nanoparticles by solution plasma , 2011 .

[140]  R. M. Sankaran,et al.  Microplasma-assisted growth of colloidal Ag nanoparticles for point-of-use surface-enhanced Raman scattering applications , 2010 .

[141]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[142]  R. Joshi,et al.  Streamer-Like Electrical Discharges in Water: Part I. Fundamental Mechanisms , 2013, Plasma Chemistry and Plasma Processing.

[143]  O. Takai Solution plasma processing (SPP) , 2008 .

[144]  I. Alexandrou,et al.  Synthesis of carbon 'onions' in water , 2001, Nature.

[145]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[146]  Mark J. Kushner,et al.  Structure of positive streamers inside gaseous bubbles immersed in liquids , 2009 .

[147]  S. Uchida,et al.  Influence of liquid temperature on the characteristics of an atmospheric dc glow discharge using a liquid electrode with a miniature helium flow , 2011 .

[148]  Takashi Nakamura,et al.  Growth of carbon dendrites on cathode above liquid ethanol using surface plasma , 2014 .

[149]  J. Dupont,et al.  Sputtering onto Liquids: From Thin Films to Nanoparticles , 2011 .

[150]  John M Pauly,et al.  Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles , 2005, Magnetic resonance in medicine.

[151]  Wonho Choe,et al.  A uniform glow discharge plasma source at atmospheric pressure , 2004 .

[152]  Guangjun Zhou,et al.  Aqueous synthesis of copper nanocubes and bimetallic copper/palladium core-shell nanostructures. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[153]  P. Mezei,et al.  Direct solution analysis by glow discharge: electrolyte-cathode discharge spectrometry , 1994 .

[154]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[155]  N. Saito,et al.  Discharge time dependence of a solution plasma process for colloidal copper nanoparticle synthesis and particle characteristics , 2013, Nanotechnology.

[156]  S. Yatsu,et al.  Controlled formation of metallic nanoballs during plasma electrolysis , 2007 .

[157]  Michio Kondo,et al.  Microplasma-induced surface engineering of silicon nanocrystals in colloidal dispersion , 2010 .

[158]  Jue Zhang,et al.  Microplasma‐Assisted Growth of Colloidal Silver Nanoparticles for Enhanced Antibacterial Activity , 2014 .

[159]  V. Fassel,et al.  Direct liquid sample introduction for flow injection analysis and liquid chromatography with inductively coupled argon plasma spectrometric detection , 1984 .

[160]  Toshimasa Suzuki,et al.  Compositional control of AuPt nanoparticles synthesized in ionic liquids by the sputter deposition technique , 2012 .

[161]  Susumu Sato,et al.  Preparation of Zinc Oxide Nanoparticles by Using Microwave-induced Plasma in Liquid , 2010 .

[162]  S. Saviz,et al.  On the Formation of TiO2 Nanoparticles Via Submerged Arc Discharge Technique: Synthesis, Characterization and Photocatalytic Properties , 2010 .

[163]  K. Moritani,et al.  Discharge electrolysis in molten chloride: formation of fine silver particles , 1998 .

[164]  J. Gittleman,et al.  Superparamagnetism and relaxation effects in granular Ni-Si O 2 and Ni- Al 2 O 3 films , 1974 .

[165]  Qiang Chen,et al.  Potential structure of discharge plasma inside liquid directly measured by an electrostatic probe , 2013 .

[166]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[167]  F. Endres,et al.  In situ STM investigation of gold reconstruction and of silicon electrodeposition on Au(111) in the room temperature ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. , 2006, The journal of physical chemistry. B.

[168]  R. Wüthrich,et al.  Building micro and nanosystems with electrochemical discharges , 2010 .

[169]  Shuhong Yu,et al.  Formation of silver nanowires by a novel solid-liquid phase arc discharge method , 1999 .

[170]  S. Nomura,et al.  Synthesis of tungsten trioxide nanoparticles by microwave plasma in liquid and analysis of physical properties , 2013 .

[171]  R. M. Sankaran,et al.  Electron-transfer reactions at the plasma-liquid interface. , 2011, Journal of the American Chemical Society.

[172]  M. Beck,et al.  Formation of C60 and polycyclic aromatic hydrocarbons upon electric discharges in liquid toluene , 1993 .

[173]  O. Takai,et al.  Size-Controlled Gold Nanoparticles Synthesized in Solution Plasma , 2011 .

[174]  Y. Gianchandani,et al.  Spectral detection of metal contaminants in water using an on-chip microglow discharge , 2002 .

[175]  M. Malik,et al.  Water Purification by Plasmas: Which Reactors are Most Energy Efficient? , 2010 .

[176]  J. Dupont,et al.  Ionic Liquid Surface Composition Controls the Size of Gold Nanoparticles Prepared by Sputtering Deposition , 2010 .

[177]  G. Amaratunga,et al.  Large-scale synthesis of single-walled carbon nanohorns by submerged arc , 2004 .

[178]  P. Michler Single quantum dots : fundamentals, applications, and new concepts , 2003 .

[179]  I. Gallimberti Impulse corona simulation for flue gas treatment , 1988 .

[180]  T. Akiyama,et al.  Size-controlled Ni nanoparticles formation by solution glow discharge , 2010 .

[181]  K. Tachibana,et al.  Integrated coaxial-hollow micro dielectric-barrier-discharges for a large-area plasma source operating at around atmospheric pressure , 2005 .

[182]  J. Janek,et al.  Plasma electrochemistry in ionic liquids: deposition of copper nanoparticles. , 2010, Physical chemistry chemical physics : PCCP.

[183]  Jinwoo Cheon,et al.  Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. , 2005, Journal of the American Chemical Society.

[184]  M. Tokushige,et al.  Synthesis of Magnetic Nanoparticles (Fe and FePt) by Plasma-Induced Cathodic Discharge Electrolysis , 2009, IEEE Transactions on Plasma Science.

[185]  Davide Mariotti,et al.  Plasma–Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface Engineering , 2012 .

[186]  Y. Gianchandani,et al.  Hybrid Arc/Glow Microdischarges at Atmospheric Pressure and Their Use in Portable Systems for Liquid and Gas Sensing , 2008, IEEE Transactions on Plasma Science.

[187]  I Langmuir,et al.  Oscillations in Ionized Gases. , 1928, Proceedings of the National Academy of Sciences of the United States of America.

[188]  Myoungseok Lee,et al.  Platinum nanoparticles prepared by a plasma-chemical reduction method , 2005 .

[189]  A. Hickling,et al.  Glow‐Discharge Electrolysis in Aqueous Solutions , 1958 .

[190]  N. Ostrom,et al.  Large arrays of microcavity plasma devices for active displays and backlighting , 2005, Journal of Display Technology.

[191]  Qiang Chen,et al.  Characterization of pulse-driven gas-liquid interfacial discharge plasmas and application to synthesis of gold nanoparticle-DNA encapsulated carbon nanotubes , 2011 .

[192]  J. Gubkin Electrolytische Metallabscheidung an der freien Oberfläche einer Salzlösung , 1887 .

[193]  Qiang Chen,et al.  Physicochemistry of the plasma-electrolyte solution interface , 2008 .

[194]  C. Cho,et al.  Effects of the medium on synthesis of nanopowders by wire explosion process , 2007 .

[195]  O. Takai,et al.  Size-regulated gold nanoparticles fabricated by a discharge in reverse micelle solutions , 2008 .

[196]  Cheng-Dah Chen,et al.  The Shape Transition of Gold Nanorods , 1999 .

[197]  C. B. Carter,et al.  Synthesis of highly oriented, single-crystal silicon nanoparticles in a low-pressure, inductively coupled plasma , 2003 .

[198]  Ken Okazaki,et al.  Microplasma synthesis of tunable photoluminescent silicon nanocrystals , 2007 .

[199]  M. Pileni,et al.  Control of the shape of copper metallic particles by using a colloidal system as template , 1997 .

[200]  M. Tokushige,et al.  Synthesis of Ni nanoparticles by plasma-induced cathodic discharge electrolysis , 2009 .

[201]  K. Furuya,et al.  Protective agent-free preparation of gold nanoplates and nanorods in aqueous HAuCl4 solutions using gas - Liquid interface discharge , 2007 .

[202]  C. R. Martin,et al.  Membrane-Based Synthesis of Nanomaterials , 1996 .

[203]  K. Nishikawa,et al.  Effects of sputtering conditions on formation of gold nanoparticles in sputter deposition technique , 2011 .

[204]  C. Schönenberger,et al.  Aqueous Gold Sols of Rod-Shaped Particles , 1997 .

[205]  H. Bleuler,et al.  Fabrication of metallic nanoparticles by electrochemical discharges , 2008 .

[206]  C. Schuh,et al.  Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys , 2009 .

[207]  X. Jiang,et al.  Plasma-induced reduction of chromium(VI) in an aqueous solution. , 2008, Environmental science & technology.

[208]  Zhengang Shi,et al.  Scheme for n phase gates operation and one-step preparation of highly entangled cluster state , 2012 .

[209]  A. Iraji zad,et al.  Synthesis and photocatalytic activity of WO3 nanoparticles prepared by the arc discharge method in deionized water , 2008, Nanotechnology.

[210]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[211]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[212]  Tsing-Tshih Tsung,et al.  Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS) , 2005 .

[213]  Sun,et al.  Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices , 2000, Science.

[214]  T. Nozaki,et al.  Oxygen passivation of silicon nanocrystals: Influences on trap states, electron mobility, and hybrid solar cell performance , 2014 .

[215]  Milan Simek,et al.  Generation of chemically active species by electrical discharges in water , 1999 .

[216]  Kazuki Yoshii,et al.  Platinum nanoparticle immobilization onto carbon nanotubes using Pt-sputtered room-temperature ionic liquid , 2012 .

[217]  V. Bansal,et al.  Cu-Nanoparticles : efficient catalysts for the oxidative cyclization of Schiffs' bases , 2006 .

[218]  Ravindra P. Joshi,et al.  Streamers in water and other dielectric liquids , 2008 .

[219]  J. Janek,et al.  Ionic liquids as green electrolytes for the electrodeposition of nanomaterials , 2007 .

[220]  H. Yoshiki,et al.  Investigation of gas–liquid interface in atmospheric-pressure micro plasma with solution , 2007 .

[221]  N. Sano Formation of multi-shelled carbon nanoparticles by arc discharge in liquid benzene , 2004 .

[222]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[223]  Takashi Nakamura,et al.  Nanographite structures formed during annealing of disordered carbon containing finely-dispersed carbon nanocapsules with iron carbide cores , 2009 .

[224]  N. Soin,et al.  Synthesis and surface engineering of nanomaterials by atmospheric-pressure microplasmas , 2011 .

[225]  T. Gregorkiewicz,et al.  Dramatic Enhancement of Photoluminescence Quantum Yields for Surface‐Engineered Si Nanocrystals within the Solar Spectrum , 2013 .

[226]  H. Suematsu,et al.  Preparation of Alumina Nanoparticles by Pulsed Wire Discharge in Water , 2011 .

[227]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .

[228]  M. S. El-shall,et al.  Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation. , 2005, The journal of physical chemistry. B.

[229]  Douglas R. MacFarlane,et al.  Electrodeposition from Ionic Liquids , 2008 .

[230]  Yunfei Liu,et al.  Controllable morphology evolution of electrodeposited ZnO nano/micro-scale structures in aqueous solution , 2009 .

[231]  Michael H. Huang,et al.  Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[232]  I. Alexandrou,et al.  Properties of carbon onions produced by an arc discharge in water , 2002 .

[233]  N. Sano,et al.  Gravitational Effects on Carbon Nano‐Materials Synthesized by Arc in Water , 2009, Annals of the New York Academy of Sciences.

[234]  E. Piepmeier,et al.  Fundamental studies of electrolyte-as-cathode glow discharge-atomic emission spectrometry for the determination of trace metals in flowing water , 1998 .

[235]  J. Janek,et al.  Plasma Electrochemistry in 1‐Butyl‐3‐methylimidazolium dicyanamide: Copper Nanoparticles from CuCl and CuCl2 , 2011 .

[236]  Y. Nagasaki,et al.  Preparation of Stable Water-Dispersible PEGylated Gold Nanoparticles Assisted by Nonequilibrium Atmospheric-Pressure Plasma Jets , 2009 .

[237]  D. Gattia,et al.  AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets , 2007 .

[238]  M. Umeno,et al.  Formation of graphene nano-particle by means of pulsed discharge to ethanol , 2013 .

[239]  N. Sano Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection , 2004 .

[240]  P. Baroch,et al.  Bipolar Pulsed Electrical Discharges in Liquid , 2008, IEEE Transactions on Plasma Science.

[241]  O. Sakai,et al.  Hydrazine generation for the reduction process using small-scale plasmas in an argon/ammonia mixed gas flow , 2013 .

[242]  T. Nozaki,et al.  Silicon nanocrystal conjugated polymer hybrid solar cells with improved performance , 2014 .

[243]  M. Tokushige,et al.  Formation of Co–Pt Intermetallic Compound Nanoparticles by Plasma-Induced Cathodic Discharge Electrolysis in a Chloride Melt , 2011 .

[244]  Steven G. Bratsch,et al.  Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K , 1989 .

[245]  M. Ingram,et al.  Glow-discharge electrolysis , 1964 .

[246]  M. V. Antisari,et al.  Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments , 2003 .

[247]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[248]  T. Kaneko,et al.  Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode , 2009 .

[249]  Di Wang,et al.  Growth and structural stability of well-ordered PdZn alloy nanoparticles , 2006 .

[250]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[251]  R. Sergiienko,et al.  Structure of Graphite Nanosheets Formed by Plasma Discharge in Liquid Ethanol , 2013, Powder Metallurgy and Metal Ceramics.

[252]  L. Němcová,et al.  Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry , 2013, Nanotechnology.

[253]  S. Kuwabata,et al.  Room-Temperature Ionic Liquid. A New Medium for Material Production and Analyses under Vacuum Conditions , 2010 .

[254]  L. Rodríguez-Sánchez,et al.  Electrochemical Synthesis of Silver Nanoparticles , 2000 .

[255]  O. Takai,et al.  Exotic shapes of gold nanoparticles synthesized using plasma in aqueous solution , 2008 .

[256]  E. Gaigneaux,et al.  Plasma-Assisted Synthesis of TiO2 Nanorods by Gliding Arc Discharge Processing at Atmospheric Pressure for Photocatalytic Applications , 2013, Plasma Chemistry and Plasma Processing.

[257]  M. Bruening,et al.  Selective hydrogenation by Pd nanoparticles embedded in polyelectrolyte multilayers. , 2004, Journal of the American Chemical Society.

[258]  J. Walsh,et al.  Spatially extended atmospheric plasma arrays , 2010 .

[259]  Kenneth S. Suslick,et al.  Plasma formation and temperature measurement during single-bubble cavitation , 2005, Nature.

[260]  J. Dobson Magnetic nanoparticles for drug delivery , 2006 .

[261]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[262]  Z. Dong,et al.  Ultrafast synthesis of layered titanate microspherulite particles by electrochemical spark discharge spallation. , 2010, Chemistry.

[263]  R. Wüthrich,et al.  Synthesis of Ni and Pt nanomaterials by cathodic contact glow discharge electrolysis in acidic and alkaline media , 2013 .

[264]  T. Tadros Colloid stability : the role of surface forces , 2007 .

[265]  Gregory Fridman,et al.  Physical and biological mechanisms of direct plasma interaction with living tissue , 2009 .

[266]  J. Dupont,et al.  On the formation of anisotropic gold nanoparticles by sputtering onto a nitrile functionalised ionic liquid. , 2011, Physical chemistry chemical physics : PCCP.

[267]  Yongbing Xie,et al.  Morphologic evolution of Au nanocrystals grown in ionic liquid by plasma reduction. , 2012, Journal of colloid and interface science.

[268]  C. Mirkin,et al.  Plasmon-mediated syntheses of metallic nanostructures. , 2013, Angewandte Chemie.

[269]  U. Kortshagen Nonthermal plasma synthesis of semiconductor nanocrystals , 2009 .

[270]  Hongwei Zhu,et al.  Formation of carbon nanotubes in water by the electric-arc technique , 2002 .

[271]  André Anders,et al.  Plasma and Ion Sources in Large Area Coatings: A Review , 2005 .

[272]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[273]  Aaron Wold,et al.  Photocatalytic properties of titanium dioxide (TiO2) , 1993 .

[274]  Takashi Nakamura,et al.  Structure of Fe–Pt alloy included carbon nanocapsules synthesized by an electric plasma discharge in an ultrasonic cavitation field of liquid ethanol , 2010 .

[275]  U. Pal,et al.  Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors , 2012, Nanoscale Research Letters.

[276]  Catherine C. Berry,et al.  Functionalisation of magnetic nanoparticles for applications in biomedicine , 2003 .

[277]  A. Ashkarran Metal and Metal Oxide Nanostructures Prepared by Electrical Arc Discharge Method in Liquids , 2011 .

[278]  K. Harada,et al.  Formation of amino acids from elemental carbon by contact glow discharge electrolysis , 1977, Nature.

[279]  Qiang Chen,et al.  Microplasma discharge in ethanol solution: Characterization and its application to the synthesis of carbon microstructures , 2008 .

[280]  M. Tokushige,et al.  Plasma-induced cathodic discharge electrolysis to form various metal/alloy nanoparticles , 2010 .

[281]  Y. Gogotsi,et al.  Localized Synthesis of Metal Nanoparticles Using Nanoscale Corona Discharge in Aqueous Solutions , 2009 .

[282]  D. Shindo,et al.  Synthesis of Fe-filled carbon nanocapsules by an electric plasma discharge in an ultrasonic cavitation field of liquid ethanol , 2006 .

[283]  J. A. Peck,et al.  Speciation of aqueous gold(III) chlorides from ultraviolet/visible absorption and Raman/resonance Raman spectroscopies , 1991 .

[284]  C. Iwamoto,et al.  Pulsed Plasma Synthesis of Iron and Nickel Nanoparticles Coated by Carbon for Medical Applications , 2013 .

[285]  M. Ukita,et al.  Physics of magnetic fluids , 1987 .

[286]  J. Fransaer,et al.  Growth of sputter-deposited gold nanoparticles in ionic liquids. , 2011, Physical chemistry chemical physics : PCCP.

[287]  T. Kaneko,et al.  Control of nanoparticle synthesis using physical and chemical dynamics of gas–liquid interfacial non-equilibrium plasmas , 2012 .

[288]  V. Burakov,et al.  Synthesis of nanoparticles using a pulsed electrical discharge in a liquid , 2008 .

[289]  K. Tachibana,et al.  Microplasma array with metamaterial effects , 2010 .

[290]  Guoliang Zhang,et al.  Size control of carbon black-supported platinum nanoparticles via novel plasma reduction , 2009 .

[291]  T. Akiyama,et al.  Nickel Nanoparticles Formation from Solution Plasma Using Edge-Shielded Electrode , 2011 .

[292]  Yongbing Xie,et al.  Stability of Ionic Liquids under the Influence of Glow Discharge Plasmas , 2008 .

[293]  M. Janda,et al.  Study of Plasma Induced Chemistry by DC Discharges in CO2/N2/H2O Mixtures Above a Water Surface , 2008, Origins of Life and Evolution of Biospheres.

[294]  Mingpu Wang,et al.  Size and shape dependent melting temperature of metallic nanoparticles , 2004 .

[295]  I. Alexandrou,et al.  γ-Al2O3 nanoparticle production by arc-discharge in water: in situ discharge characterization and nanoparticle investigation , 2009 .

[296]  P. Mezei,et al.  Emission studies on a glow discharge in atmospheric pressure air using water as a cathode , 1993 .

[297]  Harold A. Schwarz,et al.  Free Radicals Generated by Radiolysis of Aqueous Solutions. , 1981 .

[298]  Frank Endres,et al.  Electrodeposition of nanoscale silicon in a room temperature ionic liquid , 2004 .

[299]  N. Leopold,et al.  Simple approach for gold nanoparticle synthesis using an Ar-bubbled plasma setup , 2014, Journal of Nanoparticle Research.

[300]  Jin-Kyu Lee,et al.  Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling , 2003 .

[301]  H. Shirai,et al.  Large-Area Cold Atmospheric Pressure Discharges Realized by Mesh Covered Tube-Plate Electrodes in Open Air , 2013, IEEE Transactions on Plasma Science.

[302]  C. Schuh,et al.  Design of Stable Nanocrystalline Alloys , 2012, Science.