NightOwls: A Pedestrians at Night Dataset

We introduce a comprehensive public dataset, NightOwls, for pedestrian detection at night. In comparison to daytime conditions, pedestrian detection at night is more challenging due to variable and low illumination, reflections, blur, and changing contrast.

[1]  Xia Liu,et al.  Pedestrian detection using stereo night vision , 2004, IEEE Transactions on Vehicular Technology.

[2]  Xia Liu,et al.  Pedestrian detection and tracking with night vision , 2005, IEEE Transactions on Intelligent Transportation Systems.

[3]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  Tieniu Tan,et al.  A real-time object detecting and tracking system for outdoor night surveillance , 2008, Pattern Recognit..

[5]  Luc Van Gool,et al.  A mobile vision system for robust multi-person tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Pietro Perona,et al.  Pedestrian detection: A benchmark , 2009, CVPR.

[7]  Dariu Gavrila,et al.  Monocular Pedestrian Detection: Survey and Experiments , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[9]  Bernt Schiele,et al.  Multi-cue onboard pedestrian detection , 2009, CVPR.

[10]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[12]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[14]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[15]  Pietro Perona,et al.  Fast Feature Pyramids for Object Detection , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Namil Kim,et al.  Multispectral pedestrian detection: Benchmark dataset and baseline , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Bernt Schiele,et al.  Filtered channel features for pedestrian detection , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  B. Schiele,et al.  How Far are We from Solving Pedestrian Detection? , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Liang Lin,et al.  Is Faster R-CNN Doing Well for Pedestrian Detection? , 2016, ECCV.

[21]  Bernt Schiele,et al.  CityPersons: A Diverse Dataset for Pedestrian Detection , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Xiaoming Liu,et al.  Illuminating Pedestrians via Simultaneous Detection and Segmentation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).