Transformation of stimulus representations in the ascending auditory system

1 Dept. Of Physiology, Hebrew University – Hadassah Medical School, Jerusalem, Israel, {Israel, nachumu, lioraa, omerbary}@md.huji.ac.il 2 Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel 3 Institute for Computer Science, Hebrew University, Israel, {ggal, tishby}@cs.huji.ac.il 4 Dept. of Biomedical engineering, Johns Hopkins University, Baltimore MD, USA, {anderson, eyoung}@bme.jhu.edu

[1]  I. Winkler,et al.  ‘Primitive intelligence’ in the auditory cortex , 2001, Trends in Neurosciences.

[2]  S. Shamma,et al.  Analysis of dynamic spectra in ferret primary auditory cortex. II. Prediction of unit responses to arbitrary dynamic spectra. , 1996, Journal of neurophysiology.

[3]  Alon Fishbach,et al.  Neural model for physiological responses to frequency and amplitude transitions uncovers topographical order in the auditory cortex. , 2003, Journal of neurophysiology.

[4]  I. Nelken,et al.  Processing of low-probability sounds by cortical neurons , 2003, Nature Neuroscience.

[5]  Lee M. Miller,et al.  Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. , 2002, Journal of neurophysiology.

[6]  Henry Markram,et al.  Computational models for generic cortical microcircuits , 2004 .

[7]  I. Nelken,et al.  Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli. , 1994, Journal of neurophysiology.

[8]  D C Fitzpatrick,et al.  Responses of neurons to click-pairs as simulated echoes: auditory nerve to auditory cortex. , 1999, The Journal of the Acoustical Society of America.

[9]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[10]  C. Schreiner,et al.  Frequency resolution and spectral integration (critical band analysis) in single units of the cat primary auditory cortex , 1997, Journal of Comparative Physiology A.

[11]  Alain de Cheveigné,et al.  Separation of concurrent harmonic sounds: Fundamental frequency estimation and a time-domain cancell , 1993 .

[12]  E D Young,et al.  Organization of dorsal cochlear nucleus type IV unit response maps and their relationship to activation by bandlimited noise. , 1991, Journal of neurophysiology.

[13]  A Fishbach,et al.  Auditory edge detection: a neural model for physiological and psychoacoustical responses to amplitude transients. , 2001, Journal of neurophysiology.

[14]  A. de Cheveigné,et al.  The auditory system as a separation machine , 2001 .

[15]  Günter Ehret,et al.  Complex sound analysis (frequency resolution, filtering and spectral integration) by single units of the inferior colliculus of the cat , 1988, Brain Research Reviews.

[16]  Andrew J. King,et al.  Linear processing of spatial cues in primary auditory cortex , 2001, Nature.

[17]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[18]  N. Durlach Equalization and Cancellation Theory of Binaural Masking‐Level Differences , 1963 .

[19]  Alon Fishbach,et al.  Primary auditory cortex of cats: feature detection or something else? , 2003, Biological Cybernetics.

[20]  Richard R. Fay,et al.  Integrative Functions in the Mammalian Auditory Pathway , 2002, Springer Handbook of Auditory Research.

[21]  Philip H Smith,et al.  From the Cochlea to the Cortex and Back , 2002 .

[22]  I. Nelken,et al.  Responses of Neurons in Cat Primary Auditory Cortex to Bird Chirps: Effects of Temporal and Spectral Context , 2002, The Journal of Neuroscience.