Nanomechanical motion measured with an imprecision below that at the standard quantum limit.

Nanomechanical oscillators are at the heart of ultrasensitive detectors of force, mass and motion. As these detectors progress to even better sensitivity, they will encounter measurement limits imposed by the laws of quantum mechanics. If the imprecision of a measurement of the displacement of an oscillator is pushed below a scale set by the standard quantum limit, the measurement must perturb the motion of the oscillator by an amount larger than that scale. Here we show a displacement measurement with an imprecision below the standard quantum limit scale. We achieve this imprecision by measuring the motion of a nanomechanical oscillator with a nearly shot-noise limited microwave interferometer. As the interferometer is naturally operated at cryogenic temperatures, the thermal motion of the oscillator is minimized, yielding an excellent force detector with a sensitivity of 0.51 aN Hz(-1/2). This measurement is a critical step towards observing quantum behaviour in a mechanical object.

[1]  J. Teufel,et al.  Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.

[2]  Daniel Rugar,et al.  Sub-attonewton force detection at millikelvin temperatures , 2001 .

[3]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[4]  V. Sandberg,et al.  ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .

[5]  Mancini,et al.  Quantum noise reduction by radiation pressure. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[6]  Daniel Sigg,et al.  Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. , 2007, Physical review letters.

[7]  D. Goldhaber-Gordon,et al.  An off-board quantum point contact as a sensitive detector of cantilever motion , 2008, 0803.1464.

[8]  Milburn,et al.  Quantum-mechanical model for continuous position measurements. , 1987, Physical review. A, General physics.

[9]  O. Arcizet,et al.  Resolved Sideband Cooling of a Micromechanical Oscillator , 2007, 0709.4036.

[10]  J. Teufel,et al.  Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator , 2008, 0803.4007.

[11]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[12]  D. Rugar,et al.  Nanoscale magnetic resonance imaging , 2009, Proceedings of the National Academy of Sciences.

[13]  G. Milburn,et al.  Entangling a nanomechanical resonator and a superconducting microwave cavity , 2007, 0708.1665.

[14]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[15]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[16]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[17]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[18]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2008, Nature.

[19]  Stefano Mancini,et al.  Entangling macroscopic oscillators exploiting radiation pressure. , 2002, Physical review letters.

[20]  J. B. Hertzberg,et al.  Preparation and detection of a mechanical resonator near the ground state of motion , 2009, Nature.

[21]  M Pinard,et al.  High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. , 2006, Physical review letters.

[22]  G. Milburn,et al.  Nanomechanical squeezing with detection via a microwave cavity , 2008, 0803.1757.

[23]  Hiroshi Yamaguchi,et al.  Motion detection of a micromechanical resonator embedded in a d.c. SQUID , 2008 .

[24]  Michael R. Vanner,et al.  Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity , 2009, 0901.1801.

[25]  J. Teufel,et al.  Dynamical backaction of microwave fields on a nanomechanical oscillator. , 2008, Physical review letters.

[26]  T. Baehr‐Jones,et al.  Harnessing optical forces in integrated photonic circuits , 2008, Nature.

[27]  A. Clerk Quantum-limited position detection and amplification: A linear response perspective , 2004, cond-mat/0406536.

[28]  Christoph Simon,et al.  Towards quantum superpositions of a mirror , 2004 .

[29]  T. Kippenberg,et al.  Near-field cavity optomechanics with nanomechanical oscillators , 2010 .

[30]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[31]  K. Jensen,et al.  An atomic-resolution nanomechanical mass sensor. , 2008, Nature Nanotechnology.