Gate-bias assisted charge injection in organic field-effect transistors

The charge injection barriers in organic field-effect transistors (OFETs) seem to be far less critical as compared to organic light-emitting diodes (OLEDs). Counter intuitively, we show that the origin is image-force lowering of the barrier due to the gate bias at the source contact, although the corresponding gate field is perpendicular to the channel current. In coplanar OFETs, injection barriers up to 1 eV can be surmounted by increasing the gate bias, enabling extraction of bulk transport parameters in this regime. For staggered transistors, however, the injection is gate-assisted only until the gate bias is screened by the accumulation channel opposite to the source contact. The gate-assisted injection is supported by two-dimensional numerical charge transport simulations that reproduce the gate-bias dependence of the contact resistance and the typical S-shaped output curves as observed for OFETs with high injection barriers.

[1]  J. J. M. Vleggaar,et al.  Electron and hole transport in poly(p‐phenylene vinylene) devices , 1996 .

[2]  Vladimir Arkhipov,et al.  Charge injection into light-emitting diodes: Theory and experiment , 1998 .

[3]  A.Heringa,et al.  ADVANCED DEVICE MODELLING AT PHILIPS: THE CURRY PACKAGE , 1991 .

[4]  P. Blom,et al.  Formation of inversion layers in organic field-effect transistors , 2012 .

[5]  Wha Wil Schilders,et al.  Semiconductor device modelling from the numerical point of view , 1987 .

[6]  A. Carlo,et al.  Influence of carrier mobility and contact barrier height on the electrical characteristics of organic transistors , 2002 .

[7]  Fabrizio Torricelli,et al.  Charge transport in dual-gate organic field-effect transistors , 2012 .

[8]  D. Natelson,et al.  Nonlinear charge injection in organic field-effect transistors , 2005 .

[9]  Richard H. Friend,et al.  Close look at charge carrier injection in polymer field-effect transistors , 2003 .

[10]  Bernard Kippelen,et al.  A comprehensive study of short channel effects in organic field-effect transistors , 2006 .

[11]  B. Hamadani,et al.  Temperature-dependent contact resistances in high-quality polymer field-effect transistors , 2003, cond-mat/0312183.

[12]  P. Blom,et al.  Ambipolar charge transport in organic field-effect transistors , 2006 .

[13]  P. Blom,et al.  Tunable Injection Barrier in Organic Resistive Switches Based on Phase‐Separated Ferroelectric–Semiconductor Blends , 2009 .

[14]  Paul Davids,et al.  Device physics of single layer organic light-emitting diodes , 1999 .

[15]  Robert A. Street,et al.  Short channel effects in regioregular poly(thiophene) thin film transistors , 2004 .

[16]  P. Blom,et al.  Electro-optical properties of a polymer light-emitting diode with an injection-limited hole contact , 2003 .

[17]  V. Mihailetchi,et al.  Injection-limited electron current in a methanofullerene , 2003 .

[18]  Nir Tessler,et al.  Two-dimensional simulation of polymer field-effect transistor , 2001 .

[19]  Henning Sirringhaus,et al.  Analysis of the contact resistance in staggered, top-gate organic field-effect transistors , 2007 .

[20]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[21]  Jürgen Brugger,et al.  The effects of channel length and film microstructure on the performance of pentacene transistors , 2011 .

[22]  A. Fujiwara,et al.  Hole-injection barrier in pentacene field-effect transistor with Au electrodes modified by C16H33SH , 2007 .

[23]  C. Daniel Frisbie,et al.  Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy , 2003 .

[24]  P. Ruden,et al.  Channel formation in organic field-effect transistors , 2002 .

[25]  Y. Arakawa,et al.  Bottom-contact fullerene C60 thin-film transistors with high field-effect mobilities , 2008 .

[26]  Luigi Occhipinti,et al.  Modeling the gate bias dependence of contact resistance in staggered polycrystalline organic thin film transistors , 2009 .

[27]  P. Blom,et al.  Ambipolar Organic Field‐Effect Transistors Based on a Solution‐Processed Methanofullerene , 2004 .

[28]  G. Paasch,et al.  Interdependence of contact properties and field- and density-dependent mobility in organic field-effect transistors , 2009 .

[29]  P. Lugli,et al.  Modeling of Short-Channel Effects in Organic Thin-Film Transistors , 2008, IEEE Transactions on Electron Devices.

[30]  Andrew G. Glen,et al.  APPL , 2001 .

[31]  P. Blom,et al.  Temperature dependence of the charge injection in poly-dialkoxy-p-phenylene vinylene , 2001 .

[32]  M. Turbiez,et al.  High‐Mobility Ambipolar Near‐Infrared Light‐Emitting Polymer Field‐Effect Transistors , 2008 .

[33]  Michael S. Shur,et al.  An experimental study of contact effects in organic thin film transistors , 2006 .

[34]  George G. Malliaras,et al.  Numerical simulations of the electrical characteristics and the efficiencies of single-layer organic light emitting diodes , 1999 .

[35]  Robert A. Street,et al.  Contact effects in polymer transistors , 2002 .

[36]  George G. Malliaras,et al.  Charge injection and recombination at the metal–organic interface , 1999 .