Quantitative assessment of intragenic receptor tyrosine kinase deletions in primary glioblastomas: their prevalence and molecular correlates

[1]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[2]  L. Deangelis,et al.  Glioblastoma: molecular analysis and clinical implications. , 2013, Annual review of medicine.

[3]  Paul S Mischel,et al.  Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. , 2012, Cancer discovery.

[4]  Lynda Chin,et al.  Emerging insights into the molecular and cellular basis of glioblastoma. , 2012, Genes & development.

[5]  Debyani Chakravarty,et al.  Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response , 2012, Proceedings of the National Academy of Sciences.

[6]  Aaron S. Gajadhar,et al.  In Situ Analysis of Mutant EGFRs Prevalent in Glioblastoma Multiforme Reveals Aberrant Dimerization, Activation, and Differential Response to Anti-EGFR Targeted Therapy , 2012, Molecular Cancer Research.

[7]  Derek Y. Chiang,et al.  Glioblastoma-derived epidermal growth factor receptor carboxyl-terminal deletion mutants are transforming and are sensitive to EGFR-directed therapies. , 2011, Cancer research.

[8]  C. Brennan,et al.  PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplified glioblastomas. , 2010, Genes & development.

[9]  Yoshitaka Narita,et al.  Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. , 2010, Genes & development.

[10]  F. White,et al.  EGFRvIV: a previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism , 2010, Oncogene.

[11]  R. Wilson,et al.  Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. , 2010, Cancer cell.

[12]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[13]  Y. Yatabe,et al.  Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer , 2010, The FEBS journal.

[14]  C. Brennan,et al.  Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations , 2009, PloS one.

[15]  A. Kaye,et al.  The EGFRvIII variant in glioblastoma multiforme , 2009, Journal of Clinical Neuroscience.

[16]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[17]  A. Guha,et al.  Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells , 2008, Nature Cell Biology.

[18]  Webster K. Cavenee,et al.  Feedback Circuit among INK4 Tumor Suppressors Constrains Human Glioblastoma Development , 2008, Cancer cell.

[19]  Jennifer L. Osborn,et al.  Direct multiplexed measurement of gene expression with color-coded probe pairs , 2008, Nature Biotechnology.

[20]  S. Horvath,et al.  Development of a Real-time RT-PCR Assay for Detecting EGFRvIII in Glioblastoma Samples , 2008, Clinical Cancer Research.

[21]  Forest M White,et al.  Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma , 2007, Proceedings of the National Academy of Sciences.

[22]  B. van Deurs,et al.  EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes. , 2007, Carcinogenesis.

[23]  S. Gabriel,et al.  Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain , 2006, PLoS medicine.

[24]  D. Louis,et al.  Activation of STAT3, MAPK, and AKT in Malignant Astrocytic Gliomas: Correlation With EGFR Status, Tumor Grade, and Survival , 2006, Journal of neuropathology and experimental neurology.

[25]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[26]  Koji Yoshimoto,et al.  Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. , 2005, The New England journal of medicine.

[27]  S. Levy,et al.  Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  K. Ichimura,et al.  Clinical significance of EGFR amplification and the aberrant EGFRvIII transcript in conventionally treated astrocytic gliomas , 2005, Journal of Molecular Medicine.

[29]  David J. Yang,et al.  Prognostic Effect of Epidermal Growth Factor Receptor and EGFRvIII in Glioblastoma Multiforme Patients , 2005, Clinical Cancer Research.

[30]  M. Fujiki,et al.  IκBαM suppresses angiogenesis and tumorigenesis promoted by a constitutively active mutant EGFR in human glioma cells , 2004 .

[31]  A. Scott,et al.  The tumor-specific de2–7 epidermal growth factor receptor (EGFR) promotes cells survival and heterodimerizes with the wild-type EGFR , 2004, Oncogene.

[32]  Caterina Giannini,et al.  Immunohistochemical Detection of EGFRvIII in High Malignancy Grade Astrocytomas and Evaluation of Prognostic Significance , 2004, Journal of neuropathology and experimental neurology.

[33]  P. Kleihues,et al.  Predominant Expression of Mutant EGFR (EGFRvIII) is Rare in Primary Glioblastomas , 2004, Brain pathology.

[34]  Gordon K Smyth,et al.  Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2004, Statistical applications in genetics and molecular biology.

[35]  G. Riggins,et al.  Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. , 2002, Cancer research.

[36]  D. Bigner,et al.  EGF mutant receptor vIII as a molecular target in cancer therapy. , 2001, Endocrine-related cancer.

[37]  C. James,et al.  Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. , 2000, Cancer research.

[38]  H. Poulsen,et al.  Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. , 1997, Annals of oncology : official journal of the European Society for Medical Oncology.

[39]  O. Bogler,et al.  A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. , 1996, Cancer research.

[40]  J R Feramisco,et al.  Enhanced Tumorigenic Behavior of Glioblastoma Cells Expressing a Truncated Epidermal Growth Factor Receptor Is Mediated through the Ras-Shc-Grb2 Pathway* , 1996, The Journal of Biological Chemistry.

[41]  C. James,et al.  Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Yoshimoto,et al.  Amplification of alpha-platelet-derived growth factor receptor gene lacking an exon coding for a portion of the extracellular region in a primary brain tumor of glial origin. , 1992, Oncogene.

[43]  C. James,et al.  Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Welsh,et al.  Ligand-induced transformation by a noninternalizing epidermal growth factor receptor. , 1990, Science.

[45]  G. M. Walton,et al.  Functional independence of the epidermal growth factor receptor from a domain required for ligand-induced internalization and calcium regulation , 1989, Cell.

[46]  Paul S Mischel,et al.  Will kinase inhibitors make it as glioblastoma drugs? , 2012, Current topics in microbiology and immunology.

[47]  Edward R. Kastenhuber,et al.  Immunotherapeutic approaches for glioma. , 2009, Critical reviews in immunology.

[48]  W. Cavenee,et al.  Immunohistochemical analysis of the mutant epidermal growth factor, ΔEGFR, in glioblastoma , 2006, Brain Tumor Pathology.

[49]  R. Salgia,et al.  Epidermal growth factor receptor - mediated signal transduction in the development and therapy of gliomas. , 2006, Clinical cancer research : an official journal of the American Association for Cancer Research.

[50]  Y. Leea,et al.  Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target , 2006 .

[51]  M. Fujiki,et al.  IkappaBalphaM suppresses angiogenesis and tumorigenesis promoted by a constitutively active mutant EGFR in human glioma cells. , 2004, Neurological research.