Optimal location of green zones in metropolitan areas to control the urban heat island

In this paper we analyze and numerically solve a problem related to the optimal location of green zones in metropolitan areas in order to mitigate the urban heat island effect. So, we consider a microscale climate model and analyze the problem within the framework of optimal control theory of partial differential equations. Finally we compute its numerical solution using the finite element method, with the help of the interior point algorithm IPOPT, interfaced with the FreeFem++ software package.

[1]  Manju Agarwal,et al.  Modeling of the urban heat island in the form of mesoscale wind and of its effect on air pollution dispersal , 2010 .

[2]  Jan Carmeliet,et al.  Pedestrian Wind Environment around Buildings: Literature Review and Practical Examples , 2004 .

[3]  Zhangbao Hu,et al.  Numerical investigation on the urban heat island in an entire city with an urban porous media model , 2012 .

[4]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..

[5]  M. Poreh Investigation of heat islands using small scale models , 1996 .

[6]  M. Santamouris,et al.  Heat Island Research in Europe: The State of the Art , 2007 .

[7]  Wong Nyuk Hien,et al.  Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island , 2008 .

[8]  Lino J. Alvarez-Vázquez,et al.  Optimal control of eutrophication processes in a moving domain , 2014, J. Frankl. Inst..

[9]  M. Bruse,et al.  Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model , 1998 .

[10]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[11]  R. Bird,et al.  Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres , 1986 .

[12]  Akashi Mochida,et al.  Prediction of wind environment and thermal comfort at pedestrian level in urban area , 2006 .

[13]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[14]  I. Grossmann,et al.  An LP/NLP based branch and bound algorithm for convex MINLP optimization problems , 1992 .

[15]  F. Haghighat,et al.  Approaches to study Urban Heat Island – Abilities and limitations , 2010 .

[16]  Lino J. Alvarez-Vázquez,et al.  On optimal location and management of a new industrial plant: Numerical simulation and control , 2014, J. Frankl. Inst..

[17]  A. Arnfield Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island , 2003 .

[18]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[19]  R. Bird A simple, solar spectral model for direct-normal and diffuse horizontal irradiance , 1984 .

[20]  Björn Engquist,et al.  Regularization Techniques for Numerical Approximation of PDEs with Singularities , 2003, J. Sci. Comput..

[21]  Akira Ohgai,et al.  Multi-objective location modeling of urban parks and open spaces: Continuous optimization , 2010, Comput. Environ. Urban Syst..

[22]  T. S. Saitoh,et al.  Modeling and simulation of the Tokyo urban heat island , 1996 .

[23]  H. Taha Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat , 1997 .

[24]  Lino J. Alvarez-Vázquez,et al.  Optimal Management of a Bioreactor for Eutrophicated Water Treatment: A Numerical Approach , 2010, J. Sci. Comput..