Latent trait modeling of tau neuropathology in progressive supranuclear palsy

[1]  Ashley R. Jones,et al.  Joint genome-wide association study of progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to neurodegenerative diseases , 2018, Molecular Neurodegeneration.

[2]  G. Schellenberg,et al.  Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci , 2018, Molecular Neurodegeneration.

[3]  Cory C. Funk,et al.  Conserved brain myelination networks are altered in Alzheimer's and other neurodegenerative diseases , 2018, Alzheimer's & Dementia.

[4]  Per B. Brockhoff,et al.  lmerTest Package: Tests in Linear Mixed Effects Models , 2017 .

[5]  D. Cremers,et al.  Genetic defects in β-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling , 2017, eLife.

[6]  James A. Eddy,et al.  Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases , 2016, Scientific Data.

[7]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[8]  Shane A. McCarthy,et al.  Reference-based phasing using the Haplotype Reference Consortium panel , 2016, Nature Genetics.

[9]  G. Schellenberg,et al.  Gene expression, methylation and neuropathology correlations at progressive supranuclear palsy risk loci , 2016, Acta Neuropathologica.

[10]  Anushya Muruganujan,et al.  PANTHER version 10: expanded protein families and functions, and analysis tools , 2015, Nucleic Acids Res..

[11]  Jian-Zhi Wang,et al.  Stimulation of EphB2 attenuates tau phosphorylation through PI3K/Akt-mediated inactivation of glycogen synthase kinase-3β , 2015, Scientific Reports.

[12]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[13]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[14]  D. Dickson,et al.  Three sib-pairs of autopsy-confirmed progressive supranuclear palsy. , 2015, Parkinsonism & related disorders.

[15]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[16]  G. Abecasis,et al.  Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. , 2012, American journal of human genetics.

[17]  Margaret A. Pericak-Vance,et al.  Brain Expression Genome-Wide Association Study (eGWAS) Identifies Human Disease-Associated Variants , 2012, PLoS genetics.

[18]  K. Hansen,et al.  Removing technical variability in RNA-seq data using conditional quantile normalization , 2012, Biostatistics.

[19]  Andrew J. Lees,et al.  Identification of common variants influencing risk of the tauopathy Progressive Supranuclear Palsy , 2011, Nature Genetics.

[20]  Josyf Mychaleckyj,et al.  Robust relationship inference in genome-wide association studies , 2010, Bioinform..

[21]  D. Dickson,et al.  Neuropathology of variants of progressive supranuclear palsy. , 2010, Current opinion in neurology.

[22]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[23]  I. Grundke‐Iqbal,et al.  Mechanisms of tau-induced neurodegeneration , 2009, Acta Neuropathologica.

[24]  N. Naslavsky,et al.  A Role for EHD4 in the Regulation of Early Endosomal Transport , 2008, Traffic.

[25]  D. Dickson,et al.  Clinical and neuropathologic features of progressive supranuclear palsy with severe pallido-nigro-luysial degeneration and axonal dystrophy. , 2008, Brain : a journal of neurology.

[26]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[27]  A. Myers,et al.  The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts , 2007, Neurobiology of Disease.

[28]  D. Reich,et al.  Population Structure and Eigenanalysis , 2006, PLoS genetics.

[29]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[30]  J. Rothstein,et al.  Spectrin mutations cause spinocerebellar ataxia type 5 , 2006, Nature Genetics.

[31]  G. Schellenberg,et al.  High-density SNP haplotyping suggests altered regulation of tau gene expression in progressive supranuclear palsy. , 2005, Human molecular genetics.

[32]  A. Lees,et al.  Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson's syndrome and PSP-parkinsonism. , 2005, Brain : a journal of neurology.

[33]  A J Lees,et al.  Linkage disequilibrium fine mapping and haplotype association analysis of the tau gene in progressive supranuclear palsy and corticobasal degeneration , 2005, Journal of Medical Genetics.

[34]  A. Singleton,et al.  The tau H2 haplotype is almost exclusively Caucasian in origin , 2004, Neuroscience Letters.

[35]  C. Geula,et al.  Loss of Calbindin‐D28K from Aging Human Cholinergic Basal Forebrain: Relation to Plaques and Tangles , 2003, Journal of neuropathology and experimental neurology.

[36]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[37]  Noi T. Tran,et al.  Characterization of EHD4, an EH Domain-containing Protein Expressed in the Extracellular Matrix* , 2001, The Journal of Biological Chemistry.

[38]  P. Emson,et al.  Relationship of calbindin D28K‐immunoreactive cells and neuropathological changes in the hippocampal formation of Alzheimer's disease , 2001, Neuropathology : official journal of the Japanese Society of Neuropathology.

[39]  F. Wendler,et al.  Syntaxin 6: The Promiscuous Behaviour of a SNARE Protein , 2001, Traffic.

[40]  I Litvan,et al.  Association of an extended haplotype in the tau gene with progressive supranuclear palsy. , 1999, Human molecular genetics.

[41]  H. Akiyama,et al.  Astrocytic pathology in progressive supranuclear palsy: significance for neuropathological diagnosis , 1998, Acta Neuropathologica.

[42]  M. Kenward,et al.  Small sample inference for fixed effects from restricted maximum likelihood. , 1997, Biometrics.

[43]  K. Arima,et al.  Ultrastructural characterization of the tau-immunoreactive tubules in the oligodendroglial perikarya and their inner loop processes in progressive supranuclear palsy , 1997, Acta Neuropathologica.

[44]  L. Thal,et al.  Genetic evidence for the involvement of τ in progressive supranuclear palsy , 1997, Annals of neurology.

[45]  R. Scheller,et al.  A New Syntaxin Family Member Implicated in Targeting of Intracellular Transport Vesicles* , 1996, Journal of Biological Chemistry.

[46]  I Litvan,et al.  Validity and Reliability of the Preliminary NINDS Neuropathologic Criteria for Progressive Supranuclear Palsy and Related Disorders , 1996, Journal of neuropathology and experimental neurology.

[47]  I Litvan,et al.  Preliminary NINDS neuropathologic criteria for Steele‐Richardson‐Olszewski syndrome (progressive supranuclear palsy) , 1994, Neurology.

[48]  Masaya Oda,et al.  Glial fibrillary tangles with straight tubules in the brains of patients with progressive supranuclear palsy , 1992, Neuroscience Letters.

[49]  L. Pradel,et al.  Interaction between microtubule-associated protein tau and spectrin. , 1984, Biochimie.

[50]  F. Samejima Estimation of latent ability using a response pattern of graded scores , 1968 .

[51]  Dimitrios Rizopoulos ltm: An R Package for Latent Variable Modeling and Item Response Theory Analyses , 2006 .