Statistical Computation for Extreme Bridge Traffic Load Effects

The maintenance of highway infrastructure constitutes a major expenditure in many countries. This cost can be reduced significantly by minimizing the repair or replacement of highway bridges. In the assessment of existing bridges, the strength estimate tends to be more accurate than that of traffic loading, due to the more variable nature of loading. Recent advances in the statistical analysis of highway bridge traffic loading have resulted in more accurate forecasts of the actual loading to which a bridge is subject. While these advances require extensive numerical computation, they can significantly improve the accuracy of the calculation. This paper outlines the recent advances and describes the associated computational aspects in detail.

[1]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  Daniel Limpitlaw,et al.  Report from working group , 1979, Technology and Society.

[4]  A. Walden,et al.  Maximum likelihood estimation of the parameters of the generalized extreme-value distribution , 1980 .

[5]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[6]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo Method , 1981 .

[7]  Wilson H. Tang,et al.  Probability concepts in engineering planning and design , 1984 .

[8]  J. Hosking Maximum‐Likelihood Estimation of the Parameters of the Generalized Extreme‐Value Distribution , 1985 .

[9]  J. R. Wallis,et al.  Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .

[10]  A. Davison Approximate predictive likelihood , 1986 .

[11]  R. Butler Approximate predictive pivots and densities , 1989 .

[12]  Andrzej S. Nowak,et al.  BRIDGE LIVE-LOAD MODELS , 1991 .

[13]  J. F. Bjørnstad Predictive Likelihood: A Review , 1990 .

[14]  J. Angus Extreme Value Theory in Engineering , 1990 .

[15]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[16]  Bruls Alois,et al.  ENV1991 - Part 3: Traffic loads on bridges. Calibration of road load models for road bridges , 1996 .

[17]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[18]  James K. Lindsey,et al.  Parametric Statistical Inference , 1996 .

[19]  Juan R. Casas,et al.  A comprehensive traffic load model for bridge safety checking , 1997 .

[20]  D I Cooper,et al.  DEVELOPMENT OF SHORT SPAN BRIDGE-SPECIFIC ASSESSMENT LIVE LOADING , 1997 .

[21]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[22]  Simon F. Bailey,et al.  Site specific probability distribution of extreme traffic action effects , 1999 .

[23]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[24]  Pierre L'Ecuyer,et al.  An Object-Oriented Random-Number Package with Many Long Streams and Substreams , 2002, Oper. Res..

[25]  William H. Press,et al.  Numerical recipes in C , 2002 .

[26]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[27]  Colin C. Caprani,et al.  Probalistic analysis of highway bridge traffic loading , 2005 .

[28]  Colin Christopher Caprani,et al.  Headway modelling for traffic load assessment of short to medium span bridges , 2005 .

[29]  Eugene J. O'Brien,et al.  Calculating an influence line from direct measurements , 2006 .

[30]  Geoffrey J. McLachlan,et al.  Characteristic traffic load effects from a mixture of loading events on short to medium span bridges , 2008 .