Large‐Amplitude High‐Frequency Waves at Earth's Magnetopause

Large‐amplitude waves near the electron plasma frequency are found by the Magnetospheric Multiscale (MMS) mission near Earth's magnetopause. The waves are identified as Langmuir and upper hybrid (UH) waves, with wave vectors either close to parallel or close to perpendicular to the background magnetic field. The waves are found all along the magnetopause equatorial plane, including both flanks and close to the subsolar point. The waves reach very large amplitudes, up to 1 V m−1, and are thus among the most intense electric fields observed at Earth's magnetopause. In the magnetosphere and on the magnetospheric side of the magnetopause the waves are predominantly UH waves although Langmuir waves are also found. When the plasma is very weakly magnetized only Langmuir waves are likely to be found. Both Langmuir and UH waves are shown to have electromagnetic components, which are consistent with predictions from kinetic wave theory. These results show that the magnetopause and magnetosphere are often unstable to intense wave activity near the electron plasma frequency. These waves provide a possible source of radio emission at the magnetopause.

[1]  C. Russell,et al.  Instability of Agyrotropic Electron Beams near the Electron Diffusion Region. , 2017, Physical review letters.

[2]  D. Baker,et al.  Energetic electron acceleration observed by MMS in the vicinity of an X‐line crossing , 2016 .

[3]  M. Goldman,et al.  Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission , 2016 .

[4]  U. Gliese,et al.  Fast Plasma Investigation for Magnetospheric Multiscale , 2016 .

[5]  Wolfgang Baumjohann,et al.  The Magnetospheric Multiscale Magnetometers , 2016 .

[6]  A. Vaivads,et al.  Whistler emission in the separatrix regions of asymmetric magnetic reconnection , 2016 .

[7]  Thomas E. Moore,et al.  Magnetospheric Multiscale Overview and Science Objectives , 2016 .

[8]  A. Valavanoglou,et al.  The Search-Coil Magnetometer for MMS , 2016 .

[9]  Per-Arne Lindqvist,et al.  The Axial Double Probe and Fields Signal Processing for the MMS Mission , 2016 .

[10]  P. Lindqvist,et al.  The Spin-Plane Double Probe Electric Field Instrument for MMS , 2016 .

[11]  I. Cairns,et al.  Linear mode conversion of Langmuir/z mode waves to radiation: Averaged energy conversion efficiencies, polarization, and applications to Earth's continuum radiation , 2014 .

[12]  I. Cairns,et al.  Dynamical evidence for nonlinear Langmuir wave processes in type III solar radio bursts , 2014 .

[13]  I. Cairns,et al.  Harmonic waves and sheath rectification in type III solar radio bursts , 2014 .

[14]  I. Cairns,et al.  Langmuir wave harmonics due to driven nonlinear currents , 2013 .

[15]  I. Cairns,et al.  Constraints on the formation and structure of Langmuir eigenmodes in the solar wind. , 2013, Physical review letters.

[16]  A. Opitz,et al.  Observations of transverse Z mode and parametric decay in the solar wind , 2013 .

[17]  I. Cairns,et al.  Electrostatic decay of Langmuir/z‐mode waves in type III solar radio bursts , 2013 .

[18]  P. Robinson,et al.  Electrostatic decay in a weakly magnetized plasma. , 2013, Physical review letters.

[19]  A. Vaivads,et al.  Mapping HF waves in the reconnection diffusion region , 2013 .

[20]  S. Bale,et al.  Do Langmuir wave packets in the solar wind collapse , 2012 .

[21]  I. Cairns,et al.  Dependence of Langmuir wave polarization on electron beam speed in type III solar radio bursts , 2011 .

[22]  P. Kellogg,et al.  Harmonics of langmuir waves in the Earth's foreshock , 2010 .

[23]  I. Cairns,et al.  The 2fp radiation from localized Langmuir waves , 2010 .

[24]  P. Robinson,et al.  Eigenmode structure in solar-wind Langmuir waves. , 2008, Physical review letters.

[25]  P. Robinson,et al.  Extraordinary-mode radiation produced by linear-mode conversion of langmuir waves. , 2007, Physical review letters.

[26]  A. Vaivads,et al.  Structure of the separatrix region close to a magnetic reconnection X‐line: Cluster observations , 2006 .

[27]  A. Vaivads,et al.  Structure of the magnetic reconnection diffusion region from four-spacecraft observations. , 2004, Physical review letters.

[28]  A. Vaivads,et al.  Cluster observations of high-frequency waves in the exterior cusp , 2004 .

[29]  K. Ogilvie,et al.  The role of upper hybrid waves in magnetic reconnection , 2003 .

[30]  H. Matsumoto,et al.  Harmonic Langmuir waves. I. Nonlinear dispersion relation , 2003 .

[31]  W. Farrell,et al.  The dominance of electron plasma waves near a reconnection X‐line region , 2002 .

[32]  A. Weatherwax,et al.  Propagation of medium frequency (1–4 MHz) auroral radio waves to the ground via the Z‐mode radio window , 1998 .

[33]  Hideaki Kawano,et al.  Magnetopause location under extreme solar wind conditions , 1998 .

[34]  L. Yin,et al.  Generation of electromagnetic fpe and 2fpe waves in the Earth's electron foreshock via linear mode conversion , 1998 .

[35]  P. Kellogg,et al.  Transverse z‐mode waves in the terrestrial electron foreshock , 1998 .

[36]  T. Sanderson,et al.  Wind Spacecraft Observations of Solar Impulsive Electron Events Associated with Solar Type III Radio Bursts , 1998 .

[37]  F. Mozer,et al.  Wave rectification in plasma sheaths surrounding electric field antennas , 1994 .

[38]  C. Russell,et al.  Determining the standoff distance of the bow shock: Mach number dependence and use of models , 1994 .

[39]  A. Klimas,et al.  Three‐dimensional analytical model for the spatial variation of the foreshock electron distribution function: Systematics and comparisons with ISEE observations , 1990 .

[40]  D. Krauss-Varban Beam instability of the Z mode in the solar wind , 1989 .

[41]  J. Burch,et al.  Generation of electron conical distributions by upper hybrid waves in the Earth's polar region , 1988 .

[42]  I. Cairns Fundamental plasma emission involving ion sound waves , 1987, Journal of Plasma Physics.

[43]  I. Cairns Second harmonic plasma emission involving ion sound waves , 1987, Journal of Plasma Physics.

[44]  D. Jones The Magnetopause as a Source of Nonthermal Continuum Radiation , 1987 .

[45]  R. Winglee,et al.  The electron-cyclotron maser instability as a source of plasma radiation. [Solar radio bursts] , 1986 .

[46]  D. Melrose,et al.  A theory for the 2fp radiation upstream of the Earth's bow shock , 1985 .

[47]  D. Gurnett,et al.  The downshift of electron plasma oscillations in the electron foreshock region , 1985 .

[48]  Mats Andr Dispersion surfaces , 1985, Journal of Plasma Physics.

[49]  J. Etcheto,et al.  Detailed study of electron plasma waves upstream of the Earth’s bow shock , 1984 .

[50]  D. Gurnett,et al.  Electron acceleration by Landau resonance with whistler mode wave packets. Progress report , 1983 .

[51]  T. Eastman,et al.  Electrostatic bursts generated by electrons in Landau Resonance with whistler mode chorus , 1983 .

[52]  W. Kurth Detailed observations of the source of terrestrial narrowband electromagnetic radiation , 1982 .

[53]  T. Eastman,et al.  Plasma waves near the magnetopause , 1982 .

[54]  D. Gurnett,et al.  Chorus-related electrostatic bursts in the Earth's outer magnetosphere , 1982, Nature.

[55]  D. Gurnett,et al.  Energetic electrons and plasma waves associated with a solar type III radio burst , 1981 .

[56]  D. Gurnett,et al.  Escaping nonthermal continuum radiation , 1981 .

[57]  D. Melrose A theory for the nonthermal radio continua in the terrestrial and Jovian magnetospheres , 1981 .

[58]  M. Ashour‐Abdalla,et al.  Observations of a free-energy source for intense electrostatic waves. [in upper atmosphere near upper hybrid resonance frequency] , 1980 .

[59]  C. Russell,et al.  Plasma Wave Turbulence at the Magnetopause: Observations From ISEE 1 and 2 (Paper 9A0742) , 1979 .

[60]  P. Kellogg,et al.  Electrostatic noise at the plasma frequency beyond the earth's bow shock , 1979 .

[61]  D. Gurnett,et al.  Intense electrostatic waves near the upper hybrid resonance frequency. Progress report , 1978 .

[62]  M. Ashour‐Abdalla,et al.  Nonconvective and convective electron cyclotron harmonic instabilities , 1978 .

[63]  R. Gendrin,et al.  Geos I : Identification of natural magnetospheric emissions , 1978, Nature.

[64]  D. Gurnett The Earth as a radio source: The nonthermal continuum , 1974 .

[65]  V. Zakharov Collapse of Langmuir Waves , 1972 .

[66]  H. Oya Conversion of Electrostatic Plasma Waves into Electromagnetic Waves: Numerical Calculation of the Dispersion Relation for All Wavelengths , 1971 .

[67]  F. Scarf,et al.  Nonthermal electrons and high-frequency waves in the upstream solar wind, 1. Observations , 1971 .

[68]  J. Tataronis,et al.  Cyclotron harmonic wave propagation and instabilities: I. Perpendicular propagation , 1970, Journal of Plasma Physics.

[69]  J. Tataronis Cyclotron Harmonic Wave Propagation and Instabilities. , 1967 .

[70]  H. M. Stainer Waves in a Plasma in a Magnetic Field. , 1966 .

[71]  F. Berz On the Theory of Plasma Waves , 1956 .

[72]  G. R. Ellis The z propagation hole in the ionosphere , 1956 .

[73]  G. Field Radiation by Plasma Oscillations. , 1955 .