Flows on surfaces of arbitrary topology

In this paper we introduce a method to simulate fluid flows on smooth surfaces of arbitrary topology: an effect never seen before. We achieve this by combining a two-dimensional stable fluid solver with an atlas of parametrizations of a Catmull-Clark surface. The contributions of this paper are: (i) an extension of the Stable Fluids solver to arbitrary curvilinear coordinates, (ii) an elegant method to handle cross-patch boundary conditions and (iii) a set of new external forces custom tailored for surface flows. Our techniques can also be generalized to handle other types of processes on surfaces modeled by partial differential equations, such as reaction-diffusion. Some of our simulations allow a user to interactively place densities and apply forces to the surface, then watch their effects in real-time. We have also computed higher resolution animations of surface flows off-line.

[1]  R. Courant,et al.  On the solution of nonlinear hyperbolic differential equations by finite differences , 1952 .

[2]  R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .

[3]  J. Pain Fluid Dynamics , 1967, Nature.

[4]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[5]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[6]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[7]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[8]  C. Hirsch Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .

[9]  Andrew Witkin,et al.  Reaction-diffusion textures , 1991, SIGGRAPH.

[10]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[11]  Z. Warsi Fluid dynamics: theoretical and computational approaches , 1993 .

[12]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[13]  Kenneth I. Joy,et al.  Free-form deformations with lattices of arbitrary topology , 1996, SIGGRAPH.

[14]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[15]  Dimitris N. Metaxas,et al.  Modeling the motion of a hot, turbulent gas , 1997, SIGGRAPH.

[16]  D. Zorin Stationary Subdivision and Multiresolution Surface Representations , 1997 .

[17]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[18]  Charles E. Hughes,et al.  Real-Time Fluid Simulation in a Dynamic Virtual Environment , 1997, IEEE Computer Graphics and Applications.

[19]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[20]  J. Clark,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[21]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[22]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[23]  Patrick Witting,et al.  Computational fluid dynamics in a traditional animation environment , 1999, SIGGRAPH.

[24]  H. Ehlers LECTURERS , 1948, Statistics for Astrophysics.

[25]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[26]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[27]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[28]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[29]  Duc Quang Nguyen,et al.  Physically based modeling and animation of fire , 2002, ACM Trans. Graph..