Metric embedding via shortest path decompositions

We study the problem of embedding weighted graphs of pathwidth k into ℓp spaces. Our main result is an O(kmin{1p,12})-distortion embedding. For p=1, this is a super-exponential improvement over the best previous bound of Lee and Sidiropoulos. Our distortion bound is asymptotically tight for any fixed p >1. Our result is obtained via a novel embedding technique that is based on low depth decompositions of a graph via shortest paths. The core new idea is that given a geodesic shortest path P, we can probabilistically embed all points into 2 dimensions with respect to P. For p>2 our embedding also implies improved distortion on bounded treewidth graphs (O((klogn)1p)). For asymptotically large p, our results also implies improved distortion on graphs excluding a minor.

[1]  Yuval Shavitt,et al.  Big-bang simulation for embedding network distances in Euclidean space , 2004, IEEE/ACM Transactions on Networking.

[2]  James R. Lee,et al.  Embeddings of Topological Graphs: Lossy Invariants, Linearization, and 2-Sums , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[3]  James R. Lee,et al.  On the Optimality of Gluing over Scales , 2009, APPROX-RANDOM.

[4]  Refael Hassin,et al.  On multicommodity flows in planar graphs , 1984, Networks.

[5]  James R. Lee,et al.  Pathwidth, trees, and random embeddings , 2013, Comb..

[6]  Ittai Abraham,et al.  Object location using path separators , 2006, PODC '06.

[7]  Dahlia Malkhi,et al.  Efficient distributed approximation algorithms via probabilistic tree embeddings , 2008, PODC '08.

[8]  Gideon Schechtman,et al.  DIAMOND GRAPHS AND SUPER-REFLEXIVITY , 2009 .

[9]  N. Carothers A short course on Banach space theory , 2004 .

[10]  Yuri Rabinovich,et al.  On Average Distortion of Embedding Metrics into the Line , 2008, Discret. Comput. Geom..

[11]  Gary L. Miller,et al.  Finding Small Simple Cycle Separators for 2-Connected Planar Graphs , 1986, J. Comput. Syst. Sci..

[12]  Yuri Ilan,et al.  A Lower Bound on the Distortion of Embedding Planar Metrics into Euclidean Space , 2003, Discret. Comput. Geom..

[13]  Assaf Naor,et al.  Markov convexity and local rigidity of distorted metrics , 2008, SCG '08.

[14]  James R. Lee,et al.  Near-optimal distortion bounds for embedding doubling spaces into L1 , 2011, STOC '11.

[15]  Anupam Gupta,et al.  Sparsest cut on bounded treewidth graphs: algorithms and hardness results , 2013, STOC '13.

[16]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[17]  Prasad Raghavendra,et al.  Coarse Differentiation and Multi-flows in Planar Graphs , 2007, APPROX-RANDOM.

[18]  J. R. Lee,et al.  Embedding the diamond graph in Lp and dimension reduction in L1 , 2004, math/0407520.

[19]  Robert Krauthgamer,et al.  Metric Decompositions of Path-Separable Graphs , 2016, Algorithmica.

[20]  Patrice Assouad Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .

[21]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[22]  Joseph Naor,et al.  A Polylogarithmic-Competitive Algorithm for the k-Server Problem , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[23]  Amit Kumar,et al.  Traveling with a Pez dispenser (or, routing issues in MPLS) , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[24]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, and Minimum Elimination Tree Height , 1991, WG.

[25]  Ittai Abraham,et al.  Advances in metric embedding theory , 2006, STOC '06.

[26]  Mikkel Thorup Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.

[27]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[28]  BansalNikhil,et al.  A Polylogarithmic-Competitive Algorithm for the k-Server Problem , 2015 .

[29]  Thomas Andreae,et al.  On a pursuit game played on graphs for which a minor is excluded , 1986, J. Comb. Theory, Ser. B.

[30]  Anupam Gupta,et al.  Cuts, Trees and ℓ1-Embeddings of Graphs* , 2004, Comb..

[31]  James R. Lee,et al.  Genus and the geometry of the cut graph , 2010, SODA '10.

[32]  Satish Rao,et al.  Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.

[33]  Anupam Gupta,et al.  Embedding k-outerplanar graphs into ℓ1 , 2003, SODA '03.

[34]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[35]  Charles John Read,et al.  A short course on Banach space theory(London Mathematical Society Student Texts 64)By N. L. Carothers: 184 pp., Hardback £40.00 (US$75.00)(LMS members’ price £30.00 (US$56.25))Paperback £18.99 (US$32.99) (LMS members’ price £14.24 (US$24.74)),isbn 0-521-84283-2/0-521-60372-2(P)(Cambridge University , 2007 .

[36]  Robert Krauthgamer,et al.  Measured descent: a new embedding method for finite metrics , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[37]  Arnold Filtser A face cover perspective to 𝓁1 embeddings of planar graphs , 2019, SODA.

[38]  Robert Krauthgamer,et al.  Approximate Nearest Neighbor Search in Metrics of Planar Graphs , 2015, APPROX-RANDOM.

[39]  Kendrick M. Smith,et al.  The non-Gaussian halo mass function with fNL, gNL and τNL , 2011, 1102.1439.

[40]  Adam Meyerson,et al.  Bandwidth and low dimensional embedding , 2013, Theor. Comput. Sci..

[41]  Ittai Abraham,et al.  Cops, Robbers, and Threatening Skeletons: Padded Decomposition for Minor-Free Graphs , 2019, SIAM J. Comput..

[42]  Ittai Abraham,et al.  Cops, robbers, and threatening skeletons: padded decomposition for minor-free graphs , 2013, STOC.

[43]  P. Assouad Plongements lipschitziens dans ${\bbfR}\sp n$ , 1983 .