Dynamic Mapping of Evapotranspiration Using an Energy Balance-Based Model over an Andean Páramo Catchment of Southern Ecuador

Understanding of evapotranspiration (ET) processes over Andean mountain environments is crucial, particularly due to the importance of these regions to deliver water-related ecosystem services. In this context, the detection of spatio-temporal changes in ET remains poorly investigated for specific Andean ecosystems, like the paramo. To overcome this lack of knowledge, we implemented the energy-balance model METRIC with Landsat 7 ETM+ and MODIS-Terra imagery for a paramo catchment. The implementation contemplated adjustments for complex terrain in order to obtain daily, monthly and annual ET maps (between 2013 and 2014). In addition, we compared our results to the global ET product MOD16. Finally, a rigorous validation of the outputs was conducted with residual ET from the water balance. ET retrievals from METRIC (Landsat-based) showed good agreement with the validation-related ET at monthly and annual steps (mean bias error <8 mm·month−1 and annual deviation <17%). However, METRIC (MODIS-based) outputs and the MOD16 product were revealed to be unsuitable for our study due to the low spatial resolution. At last, the plausibility of METRIC to obtain spatial ET retrievals using higher resolution satellite data is demonstrated, which constitutes the first contribution to the understanding of spatially-explicit ET over an alpine catchment in the neo-tropical Andes.

[1]  A. F. Mark,et al.  Ecology of snow tussocks in the mountain grasslands of New Zealand , 2004, Vegetatio.

[2]  S. Hastenrath The glaciation of the Ecuadorian Andes , 1981 .

[3]  Richard H. Cuenca,et al.  Application of Landsat to Evaluate Effects of Irrigation Forbearance , 2013, Remote. Sens..

[4]  K. Shadan,et al.  Available online: , 2012 .

[5]  Andrew E. Suyker,et al.  Estimating seasonal evapotranspiration from temporal satellite images , 2012, Irrigation Science.

[6]  Maosheng Zhao,et al.  Development of a global evapotranspiration algorithm based on MODIS and global meteorology data , 2007 .

[7]  Ayse Irmak,et al.  Improved methods for estimating monthly and growing season ET using METRIC applied to moderate resolution satellite imagery , 2011 .

[8]  Patrick Willems,et al.  Space–time rainfall variability in the Paute basin, Ecuadorian Andes , 2007 .

[9]  C. Josse,et al.  Ecosistemas de los Andes del norte y centro , 2009 .

[10]  Gabriel B. Senay,et al.  Enhancing the Simplified Surface Energy Balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model , 2011 .

[11]  Yuei-An Liou,et al.  Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review , 2014 .

[12]  R. Scott Murray,et al.  An Empirical Algorithm for Estimating Agricultural and Riparian Evapotranspiration Using MODIS Enhanced Vegetation Index and Ground Measurements of ET. II. Application to the Lower Colorado River, U.S , 2009, Remote. Sens..

[13]  J. L. Barker,et al.  Landsat MSS and TM post-calibration dynamic ranges , 1986 .

[14]  A. Irmak EVAPOTRANSPIRATION REMOTE SENSING AND MODELING , 2012 .

[15]  P. Ramsay The Paramo vegetation of Ecuador : the community ecology, dynamics and productivity of tropical grasslands in the Andes , 1992 .

[16]  A. Huete,et al.  Vegetation Index Methods for Estimating Evapotranspiration by Remote Sensing , 2010 .

[17]  R. Bradley,et al.  20th Century Climate Change in the Tropical Andes: Observations and Model Results , 2003 .

[18]  Xiangming Xiao,et al.  Satellite-based estimation of evapotranspiration of an old-growth temperate mixed forest , 2009 .

[19]  Mario Córdova,et al.  Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data , 2015 .

[20]  R. Allen,et al.  FINE-TUNING COMPONENTS OF INVERSE-CALIBRATED, THERMAL-BASED REMOTE SENSING MODELS FOR EVAPOTRANSPIRATION , 2008 .

[21]  Frank Veroustraete,et al.  Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation , 2008, Sensors.

[22]  Derrel L. Martin,et al.  Satellite-Based Energy Balance Approach to Assess Riparian Water Use , 2013 .

[23]  J. Feyen,et al.  Identifying controls of the rainfall–runoff response of small catchments in the tropical Andes (Ecuador) , 2011 .

[24]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[25]  R. Allen,et al.  Operational Remote Sensing of ET and Challenges , 2012 .

[26]  S. Running,et al.  MODIS Leaf Area Index (LAI) And Fraction Of Photosynthetically Active Radiation Absorbed By Vegetation (FPAR) Product , 1999 .

[27]  R. Allen,et al.  At-Surface Reflectance and Albedo from Satellite for Operational Calculation of Land Surface Energy Balance , 2008 .

[28]  D. Hongve A revised procedure for discharge measurement by means of the salt dilution method , 1987 .

[29]  Patrick Willems,et al.  Climate changes of hydrometeorological and hydrological extremes in the Paute basin, Ecuadorean Andes , 2013 .

[30]  J. Feyen,et al.  The Hydrology of Tropical Andean Ecosystems: Importance, Knowledge Status, and Perspectives , 2009 .

[31]  Martha C. Anderson,et al.  A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing , 1997 .

[32]  Zhouyuan Li,et al.  Retrieval of the surface evapotranspiration patterns in the alpine grassland–wetland ecosystem applying SEBAL model in the source region of the Yellow River, China , 2013 .

[33]  M. S. Moran,et al.  Assessing the Spatial Distribution of Evapotranspiration Using Remotely Sensed Inputs , 1991 .

[34]  Wouter Buytaert,et al.  Analysis of the Water Balance of Small Páramo Catchments in South Ecuador , 2006 .

[35]  P. Nagler,et al.  Vegetation index‐based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems , 2011 .

[36]  W. Bastiaanssen Regionalization of surface flux densities and moisture indicators in composite terrain. A remote sensing approach under clear skies in Mediterranean climates. , 1995 .

[37]  William A. Beckman,et al.  Solar Engineering of Thermal Processes, 2nd ed. , 1994 .

[38]  J. Norman,et al.  Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover , 1999 .

[39]  Shijo Joseph,et al.  Consistent response of vegetation dynamics to recent climate change in tropical mountain regions , 2014, Global change biology.

[40]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .

[41]  B. Séguin,et al.  Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches , 2005 .

[42]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[43]  P. van der Zaag,et al.  Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa , 2013 .

[44]  P. Souza,et al.  Estimate of evapotranspiration in the eastern Amazon using SEBAL. , 2013 .

[45]  Wim G.M. Bastiaanssen,et al.  Spatial evapotranspiration, rainfall and land use data in water accounting - Part 1: Review of the accuracy of the remote sensing data , 2014 .

[46]  R. Célleri,et al.  Runoff from tropical alpine grasslands increases with areal extent of wetlands , 2015 .

[47]  James L. Wright,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications , 2007 .

[48]  Eric F. Wood,et al.  Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches , 2011 .

[49]  J. Bendix,et al.  Cloud occurrence and cloud properties in Ecuador , 2006 .

[50]  Richard G. Allen,et al.  Estimation of Actual Evapotranspiration along the Middle Rio Grande of New Mexico Using MODIS and Landsat Imagery with the METRIC Model , 2013, Remote. Sens..

[51]  A. Moene,et al.  Estimating Actual Evapotranspiration from Satellite and Meteorological Data in Central Bolivia , 2011 .

[52]  B. Merkel,et al.  Actual Evapotranspiration in the Al-Khazir Gomal Basin (Northern Iraq) Using the Surface Energy Balance Algorithm for Land (SEBAL) and Water Balance , 2015 .

[53]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[54]  W. J. Kramber,et al.  Automated Calibration of the METRIC‐Landsat Evapotranspiration Process , 2013 .

[55]  H. Fowler,et al.  Elevation-dependent warming in mountain regions of the world , 2015 .

[56]  Rudolf Schmid,et al.  Páramos: A Checklist of Plant Diversity, Geographical Distribution, and Botanical Literature@@@Paramos: A Checklist of Plant Diversity, Geographical Distribution, and Botanical Literature , 1999 .

[57]  P. Sklenář,et al.  Distribution patterns of páramo plants in Ecuador , 1999 .

[58]  R. Garreaud,et al.  Impact of the global warming hiatus on Andean temperature , 2015 .

[59]  Maosheng Zhao,et al.  Improvements to a MODIS global terrestrial evapotranspiration algorithm , 2011 .

[60]  E. Lambin,et al.  Impacts of forest cover change on ecosystem services in high Andean mountains , 2015 .

[61]  S. Islam,et al.  Evapotranspiration estimation over agricultural plains using MODIS data for all sky conditions , 2015 .

[62]  J. Finch Remote Sensing in Water Resources Management. The State of the Art. By W. G. M. Bastiaanssen. Colombo, Sri Lanka: International Water Management Institute (1998), pp. 118, US$25.00 (developing countries US$12.50). ISBN 92-9090-363-5. , 2000, Experimental Agriculture.

[63]  G. E. Wukelic,et al.  Radiometric calibration of Landsat Thematic Mapper Thermal Band , 1989 .

[64]  Jörg Bendix,et al.  Gradients in a Tropical Mountain Ecosystem of Ecuador , 2008 .

[65]  Wouter Buytaert,et al.  Human impact on the hydrology of the Andean páramos , 2006 .

[66]  Wei Gao,et al.  Improvements of regional evapotranspiration model by considering topography correction , 2008, Optical Engineering + Applications.

[67]  Mark A. Friedl,et al.  Determination of Roughness Lengths for Heat and Momentum Over Boreal Forests , 2003 .

[68]  Richard G. Allen,et al.  Evapotranspiration information reporting: II. Recommended documentation , 2011 .

[69]  Ray Leuning,et al.  Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia , 2009 .

[70]  R. D. Moore Introduction to Salt Dilution Gauging for Streamflow Measurement Part 2 : Constant-rate Injection , 2008 .

[71]  Ayse Irmak,et al.  Satellite‐based ET estimation in agriculture using SEBAL and METRIC , 2011 .

[72]  Graham A. Tobin,et al.  Applied hydrology, McGraw-Hill series in water resources and environmental engineering; book review , 1989 .

[73]  J. Feyen,et al.  Land use change impacts on the hydrology of wet Andean páramo ecosystems , 2010 .

[74]  Frank V. Hansen,et al.  Surface Roughness Lengths , 1993 .

[75]  R. Scott Murray,et al.  An Empirical Algorithm for Estimating Agricultural and Riparian Evapotranspiration Using MODIS Enhanced Vegetation Index and Ground Measurements of ET. I. Description of Method , 2009, Remote. Sens..

[76]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[77]  Hongjun Li,et al.  Sensitivity of Landsat‐Scale Energy Balance to Aerodynamic Variability in Mountains and Complex Terrain , 2013 .

[78]  I. A. Walter,et al.  The ASCE standardized reference evapotranspiration equation , 2005 .

[79]  R. Bradley,et al.  Climate Variability in the Andes of Ecuador and Its Relation to Tropical Pacific and Atlantic Sea Surface Temperature Anomalies , 2000 .

[80]  Bunkei Matsushita,et al.  Development of a Simple Remote Sensing EvapoTranspiration model (Sim-ReSET): Algorithm and model test , 2009 .

[81]  Chenghu Zhou,et al.  A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data , 2009, Sensors.

[82]  M. Tasumi Progress in operational estimation of regional evapotranspiration using satellite imagery , 2003 .

[83]  H. Sipman,et al.  Paramos: A Checklist of Plant Diversity, Geographical Distribuion, and Botanical Literature , 1999 .

[84]  Michael J. Oimoen,et al.  ASTER Global Digital Elevation Model Version 2 - summary of validation results , 2011 .

[85]  Luis S. Pereira,et al.  Satellite-based evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithms , 2014 .

[86]  Ayse Irmak,et al.  Treatment of anchor pixels in the METRIC model for improved estimation of sensible and latent heat fluxes , 2011 .

[87]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[88]  Justin L. Huntington,et al.  Assessing Calibration Uncertainty and Automation for Estimating Evapotranspiration from Agricultural Areas Using METRIC , 2013 .

[89]  G. Senay,et al.  A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET , 2013 .

[90]  L. Aragão,et al.  Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin , 2013 .

[91]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[92]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .

[93]  L. S. Pereira,et al.  Evapotranspiration information reporting: I. Factors governing measurement accuracy , 2011 .

[94]  Jörg Bendix,et al.  The Ecosystem (Reserva Biológica San Francisco) , 2008 .

[95]  Christopher Hay,et al.  Estimation of Evapotranspiration from Fields with and without Cover Crops Using Remote Sensing and in situ Methods , 2012, Remote. Sens..

[96]  L. S. Pereira,et al.  Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[97]  Marcos Carrasco-Benavides,et al.  Parameterization of the Satellite-Based Model (METRIC) for the Estimation of Instantaneous Surface Energy Balance Components over a Drip-Irrigated Vineyard , 2014, Remote. Sens..

[98]  Richard G. Allen,et al.  Analytical integrated functions for daily solar radiation on slopes , 2006 .

[99]  J. A. Tolk,et al.  ET mapping for agricultural water management: present status and challenges , 2008, Irrigation Science.

[100]  W. Bastiaanssen Remote sensing in water resources management: the state of the art. , 1998 .

[101]  Luis S. Pereira,et al.  Modelling for Improved Irrigation Water Management in a Temperate Region of Northern Spain , 2006 .

[102]  M. Dastorani,et al.  Evaluation of Water Balance in a Mountainous Upland Catchment Using SEBAL Approach , 2012, Water Resources Management.

[103]  T. Nauss,et al.  Projecting land-use and land-cover changes in a tropical mountain forest of Southern Ecuador , 2014 .

[104]  William P. Kustas,et al.  Use of remote sensing for evapotranspiration monitoring over land surfaces , 1996 .

[105]  Angelika Bayer,et al.  Solar Engineering Of Thermal Processes , 2016 .

[106]  C. Paulson The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer , 1970 .

[107]  H. E. Jobson Evaporation Into the Atmosphere: Theory, History, and Applications , 1982 .

[108]  E. K. Webb Profile relationships: The log‐linear range, and extension to strong stability , 1970 .

[109]  Jones Arwyn,et al.  World reference base for soil resources 2014International soil classification system for naming soils and creating legends for soil maps , 2015 .

[110]  Seung Oh Lee,et al.  Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia , 2012 .

[111]  Luiz Eduardo Oliveira E. Cruz de Aragão,et al.  A MODIS-Based Energy Balance to Estimate Evapotranspiration for Clear-Sky Days in Brazilian Tropical Savannas , 2012, Remote. Sens..

[112]  K. Moffett,et al.  Remote Sens , 2015 .