Local search starting from an LP solution: Fast and quite good

We present and evaluate a specific way to generate good start solutions for local search. The start solution is computed from a certain LP, which is related to the underlying problem. We consider three optimization problems: the directed MAX-CUT problem with a source and a sink and two variations of the MAX-k-SAT problem with k = 2 and k = 3. To compare our technique, we run local search repeatedly with random start solutions. Our technique produces, consistently, final solutions whose objective values are not too far from the best solutions from repeated random starts. The surprising degree of stability and uniformity of this result throughout all of our experiments on various classes of instances strongly suggests that we have consistently achieved nearly optimal solutions. On the other hand, the runtime of our technique is rather small, so the technique is very efficient and probably quite accurate.

[1]  Siam J. CoMPtrr,et al.  FINDING A MAXIMUM CUT OF A PLANAR GRAPH IN POLYNOMIAL TIME * , 2022 .

[2]  Yuichi Asahiro,et al.  Random generation of test instances with controlled attributes , 1993, Cliques, Coloring, and Satisfiability.

[3]  Uri Zwick,et al.  Improved Rounding Techniques for the MAX 2-SAT and MAX DI-CUT Problems , 2002, IPCO.

[4]  Luca Trevisan,et al.  Gadgets, Approximation, and Linear Programming , 2000, SIAM J. Comput..

[5]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[6]  David P. Williamson,et al.  .879-approximation algorithms for MAX CUT and MAX 2SAT , 1994, STOC '94.

[7]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[8]  Mohammad Taghi Hajiaghayi,et al.  Random MAX SAT, random MAX CUT, and their phase transitions , 2003, SODA '03.

[9]  Hector J. Levesque,et al.  Generating Hard Satisfiability Problems , 1996, Artif. Intell..

[10]  R. M. Mattheyses,et al.  A Linear-Time Heuristic for Improving Network Partitions , 1982, 19th Design Automation Conference.

[11]  Celso C. Ribeiro,et al.  GRASP and VNS for Max-Cut , 2002 .

[12]  Panos M. Pardalos,et al.  Handbook of applied optimization , 2002 .

[13]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..

[14]  Jin-Kao Hao,et al.  A hybrid approach for the 0-1 multidimensional knapsack problem , 2001, IJCAI 2001.

[15]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[16]  Vijay V. Vazirani,et al.  A polyhedron with alls—t cuts as vertices, and adjacency of cuts , 1995, Math. Program..

[17]  Zsolt Tuza,et al.  Maximum cuts and largest bipartite subgraphs , 1993, Combinatorial Optimization.

[18]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[19]  Tomomi Matsui,et al.  0.863-Approximation Algorithm for MAX DICUT , 2001 .

[20]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[21]  Roberto Battiti,et al.  Approximate Algorithms and Heuristics for MAX-SAT , 1998 .

[22]  Ramón Alvarez-Valdés,et al.  A computational study of LP-based heuristic algorithms for two-dimensional guillotine cutting stock problems , 2002, OR Spectr..

[23]  Charles Delorme,et al.  Laplacian eigenvalues and the maximum cut problem , 1993, Math. Program..

[24]  Marcus Peinado,et al.  Design and Performance of Parallel and Distributed Approximation Algorithms for Maxcut , 1997, J. Parallel Distributed Comput..

[25]  U. Zwick Analyzing the MAX 2-SAT and MAX DI-CUT approximation algorithms of Feige and Goemans , 2000 .

[26]  John M. Wilson,et al.  An LP-based heuristic procedure for the generalized assignment problem with special ordered sets , 2007, Comput. Oper. Res..

[27]  Bezalel Gavish,et al.  LP-Based Heuristic Algorithms for Interconnecting Token Rings via Source Routing Bridges , 2000, J. Heuristics.

[28]  Matsui Tomomi,et al.  0.935 - Approximation Randomized Algorithm for MAX 2SAT and Its Derandomization , 2001 .

[29]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[30]  Thomas Stützle,et al.  A survey of methods that combine local search and exact algorithms , 2022 .

[31]  John E. Beasley,et al.  Heuristic algorithms for the unconstrained binary quadratic programming problem , 1998 .

[32]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[33]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[34]  Günther R. Raidl,et al.  An improved hybrid genetic algorithm for the generalized assignment problem , 2004, SAC '04.

[35]  Tomomi Matsui,et al.  63-Approximation Algorithm for MAX DICUT , 2001, RANDOM-APPROX.

[36]  Abraham Duarte,et al.  A low-level hybridization between memetic algorithm and VNS for the max-cut problem , 2005, GECCO '05.

[37]  Panos M. Pardalos,et al.  Approximate solution of weighted MAX-SAT problems using GRASP , 1996, Satisfiability Problem: Theory and Applications.

[38]  Johan Håstad,et al.  Some optimal inapproximability results , 1997, STOC '97.

[39]  Uri Zwick,et al.  A 7/8-approximation algorithm for MAX 3SAT? , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[40]  Panos M. Pardalos,et al.  A Parallel GRASP for MAX-SAT Problems , 1996, PARA.

[41]  Uriel Feige,et al.  Approximating the value of two power proof systems, with applications to MAX 2SAT and MAX DICUT , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[42]  Pablo Moscato,et al.  Handbook of Applied Optimization , 2000 .

[43]  Panos M. Pardalos,et al.  Randomized heuristics for the Max-Cut problem , 2002, Optim. Methods Softw..

[44]  Celso C. Ribeiro,et al.  Probability Distribution of Solution Time in GRASP: An Experimental Investigation , 2002, J. Heuristics.

[45]  Reuven Y. Rubinstein,et al.  Cross-entropy and rare events for maximal cut and partition problems , 2002, TOMC.

[46]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[47]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[48]  Fred Glover,et al.  Tabu Search and Adaptive Memory Programming — Advances, Applications and Challenges , 1997 .

[49]  Edward P. K. Tsang,et al.  Guided Local Search for Solving SAT and Weighted MAX-SAT Problems , 2000, Journal of Automated Reasoning.

[50]  U Aickelin,et al.  Handbook of metaheuristics (International series in operations research and management science) , 2005 .

[51]  Charles Delorme,et al.  The performance of an eigenvalue bound on the max-cut problem in some classes of graphs , 1993, Discret. Math..

[52]  Laura A. Sanchis,et al.  Some Experimental and Theoretical Results on Test Case Generators for the Maximum Clique Problem , 1996, INFORMS J. Comput..

[53]  Yin Zhang,et al.  Rank-Two Relaxation Heuristics for MAX-CUT and Other Binary Quadratic Programs , 2002, SIAM J. Optim..

[54]  Günther R. Raidl,et al.  Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification , 2005, IWINAC.

[55]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[56]  Yong-Hyuk Kim,et al.  A hybrid genetic algorithm for the MAX CUT problem , 2001 .

[57]  Luca Trevisan,et al.  Gadgets, approximation, and linear programming , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[58]  Marek Karpinski,et al.  Polynomial time approximation schemes for dense instances of NP-hard problems , 1995, STOC '95.

[59]  Ralph E. Gomory,et al.  A Linear Programming Approach to the Cutting Stock Problem---Part II , 1963 .

[60]  Pierre Hansen,et al.  Algorithms for the maximum satisfiability problem , 1987, Computing.

[61]  Celso C. Ribeiro,et al.  Greedy Randomized Adaptive Search Procedures , 2003, Handbook of Metaheuristics.

[62]  Charles Delorme,et al.  Combinatorial Properties and the Complexity of a Max-cut Approximation , 1993, Eur. J. Comb..

[63]  Andreas Klose,et al.  An LP-based heuristic for two-stage capacitated facility location problems , 1999, J. Oper. Res. Soc..

[64]  F. Hadlock,et al.  Finding a Maximum Cut of a Planar Graph in Polynomial Time , 1975, SIAM J. Comput..

[65]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[66]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[67]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.