Spectral Features and Asymptotic Properties for g-Circulants and g-Toeplitz Sequences
暂无分享,去创建一个
[1] Stefano Serra-Capizzano,et al. The spectral approximation of multiplication operators via asymptotic (structured) linear algebra , 2007 .
[2] William F. Trench. Properties of multilevel block α̲-circulants , 2009 .
[3] Albrecht Böttcher,et al. The Szegő and Avram–Parter theorems for general test functions , 2008 .
[4] Eugene E. Tyrtyshnikov,et al. Spectra of multilevel toeplitz matrices: Advanced theory via simple matrix relationships , 1998 .
[5] Paolo Tilli,et al. Some Results on Complex Toeplitz Eigenvalues , 1999 .
[6] Stefano Serra Capizzano,et al. Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..
[7] Stefano Serra-Capizzano,et al. Multigrid Methods for Multilevel Circulant Matrices , 2005 .
[8] Stefano Serra,et al. Multigrid methods for toeplitz matrices , 1991 .
[9] D. Fasino,et al. Spectral clustering properties of block multilevel Hankel matrices , 2000 .
[10] Stefano Serra Capizzano,et al. V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..
[11] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[12] Stefano Serra Capizzano,et al. Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002, Numerische Mathematik.
[13] Leonid Golinskii,et al. The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences , 2007, J. Approx. Theory.
[14] Gene H. Golub,et al. Matrix computations , 1983 .
[15] S. Serra-Capizzano. A Note on Antireflective Boundary Conditions and Fast Deblurring Models , 2003 .
[16] Paolo Tilli,et al. A note on the spectral distribution of toeplitz matrices , 1998 .
[17] Bernd Silbermann,et al. Asymptotic Behavior of Generalized Convolutions: An Algebraic Approach , 2006 .
[18] Stefano Serra-Capizzano,et al. Spectral features and asymptotic properties for alpha-circulants and alpha-Toeplitz sequences: theoretical results and examples , 2009, 0906.2104.
[19] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[20] S. Serra Capizzano,et al. Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .
[21] Stefano Serra Capizzano,et al. Asymptotic Zero Distribution of Orthogonal Polynomials with Discontinuously Varying Recurrence Coefficients , 2001, J. Approx. Theory.
[22] Pedro M. Crespo,et al. Mass concentration in quasicommutators of Toeplitz matrices , 2007 .
[23] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[24] S. Serra Capizzano,et al. Distribution results on the algebra generated by Toeplitz sequences: a finite-dimensional approach , 2001 .
[25] Gilbert Strang,et al. Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..