Spectral Features and Asymptotic Properties for g-Circulants and g-Toeplitz Sequences

For a given nonnegative integer $g$, a matrix $A_n$ of size $n$ is called $g$-Toeplitz if its entries obey the rule $A_n=[a_{r-gs}]_{r,s=0}^{n-1}$. Analogously, a matrix $A_n$ again of size $n$ is called $g$-circulant if $A_n=\bigl[a_{(r-g s) \mathrm{mod}\,n}\bigr]_{r,s=0}^{n-1}$. Such matrices arise in wavelet analysis, subdivision algorithms, and more generally when dealing with multigrid/multilevel methods for structured matrices and approximations of boundary value problems. In this paper we study the singular values of $g$-circulants and provide an asymptotic analysis of the distribution results for the singular values of $g$-Toeplitz sequences in the case where $\{a_k\}$ can be interpreted as the sequence of Fourier coefficients of an integrable function $f$ over the domain $(-\pi,\pi)$. Generalizations to the block and multilevel case are also considered.

[1]  Stefano Serra-Capizzano,et al.  The spectral approximation of multiplication operators via asymptotic (structured) linear algebra , 2007 .

[2]  William F. Trench Properties of multilevel block α̲-circulants , 2009 .

[3]  Albrecht Böttcher,et al.  The Szegő and Avram–Parter theorems for general test functions , 2008 .

[4]  Eugene E. Tyrtyshnikov,et al.  Spectra of multilevel toeplitz matrices: Advanced theory via simple matrix relationships , 1998 .

[5]  Paolo Tilli,et al.  Some Results on Complex Toeplitz Eigenvalues , 1999 .

[6]  Stefano Serra Capizzano,et al.  Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..

[7]  Stefano Serra-Capizzano,et al.  Multigrid Methods for Multilevel Circulant Matrices , 2005 .

[8]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[9]  D. Fasino,et al.  Spectral clustering properties of block multilevel Hankel matrices , 2000 .

[10]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[11]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[12]  Stefano Serra Capizzano,et al.  Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002, Numerische Mathematik.

[13]  Leonid Golinskii,et al.  The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences , 2007, J. Approx. Theory.

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  S. Serra-Capizzano A Note on Antireflective Boundary Conditions and Fast Deblurring Models , 2003 .

[16]  Paolo Tilli,et al.  A note on the spectral distribution of toeplitz matrices , 1998 .

[17]  Bernd Silbermann,et al.  Asymptotic Behavior of Generalized Convolutions: An Algebraic Approach , 2006 .

[18]  Stefano Serra-Capizzano,et al.  Spectral features and asymptotic properties for alpha-circulants and alpha-Toeplitz sequences: theoretical results and examples , 2009, 0906.2104.

[19]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[20]  S. Serra Capizzano,et al.  Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .

[21]  Stefano Serra Capizzano,et al.  Asymptotic Zero Distribution of Orthogonal Polynomials with Discontinuously Varying Recurrence Coefficients , 2001, J. Approx. Theory.

[22]  Pedro M. Crespo,et al.  Mass concentration in quasicommutators of Toeplitz matrices , 2007 .

[23]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[24]  S. Serra Capizzano,et al.  Distribution results on the algebra generated by Toeplitz sequences: a finite-dimensional approach , 2001 .

[25]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..