Generalized sampling , infinite-dimensional compressed sensing , and semi-random sampling for asymptotically incoherent dictionaries

Recent developments in sampling in abstract Hilbert spaces have led to a new theory of compressed sensing for infinitedimensional signals. In this paper, we continue with this theme by introducing a new type of subsampling for infinite-dimensional sparse recovery problems, known as semi-random sampling. As we demonstrate, this allows for subsampling in problems which previously had not been amenable to more conventional compressed sensing tools. More specifically, semi-random sampling allows one to overcome the so-called incoherence barrier, which limits the potential for subsampling via standard random sampling techniques. The key to this improvement is a property known as asymptotic incoherence. In the final part of this paper we provide specific estimates for this property in several important cases, and illustrate via numerical example the benefit of semi-random sampling.

[1]  Michael Unser,et al.  Consistent Sampling and Signal Recovery , 2007, IEEE Transactions on Signal Processing.

[2]  Karlheinz Gröchenig,et al.  Pseudospectral Fourier reconstruction with IPRM , 2008, Structured Decompositions and Efficient Algorithms.

[3]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[4]  Yonina C. Eldar Compressed Sensing of Analog Signals in Shift-Invariant Spaces , 2008, IEEE Transactions on Signal Processing.

[5]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[6]  Yonina C. Eldar Sampling Without Input Constraints: Consistent Reconstruction in Arbitrary Spaces , 2004 .

[7]  H. Rauhut,et al.  Sparse recovery for spherical harmonic expansions , 2011, 1102.4097.

[8]  J. Zerubia,et al.  A Generalized Sampling Theory without bandlimiting constraints , 1998 .

[9]  A. J. Jerri Correction to "The Shannon sampling theorem—Its various extensions and applications: A tutorial review" , 1979 .

[10]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[11]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[12]  Yonina C. Eldar,et al.  General Framework for Consistent Sampling in Hilbert Spaces , 2005, Int. J. Wavelets Multiresolution Inf. Process..

[13]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[14]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[15]  Ben Adcock,et al.  REDUCED CONSISTENCY SAMPLING IN HILBERT SPACES , 2011 .

[16]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[17]  Holger Rauhut,et al.  Sparse Legendre expansions via l1-minimization , 2012, J. Approx. Theory.

[18]  Chi-Wang Shu,et al.  On the Gibbs Phenomenon and Its Resolution , 1997, SIAM Rev..

[19]  Anne Gelb,et al.  Robust reprojection methods for the resolution of the Gibbs phenomenon , 2006 .

[20]  Michael Unser,et al.  A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..

[21]  Yonina C. Eldar,et al.  Structured Compressed Sensing: From Theory to Applications , 2011, IEEE Transactions on Signal Processing.

[22]  Yonina C. Eldar,et al.  Robust and Consistent Sampling , 2009, IEEE Signal Processing Letters.

[23]  Yonina C. Eldar,et al.  Beyond bandlimited sampling , 2009, IEEE Signal Processing Magazine.

[24]  Marco Righero,et al.  An introduction to compressive sensing , 2009 .

[25]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[26]  E. Candès,et al.  Compressive fluorescence microscopy for biological and hyperspectral imaging , 2012, Proceedings of the National Academy of Sciences.

[27]  L. J. Landau,et al.  Bessel Functions: Monotonicity and Bounds , 2000 .

[28]  Yonina C. Eldar,et al.  Xampling: Signal Acquisition and Processing in Union of Subspaces , 2009, IEEE Transactions on Signal Processing.

[29]  M. Vetterli,et al.  Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.

[30]  G. Teschke,et al.  Compressive sensing principles and iterative sparse recovery for inverse and ill-posed problems , 2010 .

[31]  Karlheinz Gröchenig,et al.  Pseudospectral Fourier reconstruction with the modified Inverse Polynomial Reconstruction Method , 2010, J. Comput. Phys..

[32]  Yonina C. Eldar,et al.  Xampling: Analog to digital at sub-Nyquist rates , 2009, IET Circuits Devices Syst..

[33]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[34]  Anders C. Hansen,et al.  On the Solvability Complexity Index, the n-pseudospectrum and approximations of spectra of operators , 2011 .

[35]  Ben Adcock,et al.  Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon , 2010, 1011.6625.

[36]  Yonina C. Eldar,et al.  A minimum squared-error framework for generalized sampling , 2006, IEEE Transactions on Signal Processing.

[37]  M. Lustig,et al.  Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13C studies , 2011, Magnetic resonance in medicine.

[38]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[39]  Yonina C. Eldar Sampling with Arbitrary Sampling and Reconstruction Spaces and Oblique Dual Frame Vectors , 2003 .

[40]  Ben Adcock,et al.  A Generalized Sampling Theorem for Stable Reconstructions in Arbitrary Bases , 2010, 1007.1852.

[41]  Thierry Blu,et al.  Extrapolation and Interpolation) , 2022 .