On the generalized discrepancy principle for Tikhonov regularization in Hilbert scales

For solving linear ill-posed problems regularization methods are required when the right hand side and the operator are with some noise. In the present paper regularized solutions are obtained by Tikhonov regularization in Hilbert scales and the regularization parameter is chosen by the generalized discrepancy principle. Under certain smoothness assumptions we provide order optimal error bounds that characterize the accuracy of the regularized solution. It appears that for getting small error bounds a proper scaling of the penalizing operator B is required. For the computation of the regularization parameter fast algorithms of Newton type are constructed which are based on special transformations. These algorithms are globally and monotonically convergent. The results extend earlier results where the problem operator is exactly given. Some of our theoretical results are illustrated by numerical experiments.

[1]  A. V. Goncharskii,et al.  A generalized discrepancy principle , 1973 .

[2]  Ulrich Tautenhahn,et al.  On a general regularization scheme for nonlinear ill-posed problems , 1997 .

[3]  Bernard A. Mair,et al.  Tikhonov regularization for finitely and infinitely smoothing operators , 1994 .

[4]  Ulrich Tautenhahn,et al.  Error Estimates for Regularization Methods in Hilbert Scales , 1996 .

[5]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[6]  A regularizing algorithm for incorrectly formulated problems with an approximately specified operator , 1972 .

[7]  Ulrich Tautenhahn,et al.  On a general regularization scheme for nonlinear ill-posed problems: II. Regularization in Hilbert scales , 1998 .

[8]  Gene H. Golub,et al.  Tikhonov Regularization and Total Least Squares , 1999, SIAM J. Matrix Anal. Appl..

[9]  A. Leonov Numerical piecewise-uniform regularization for two-dimensional ill-posed problems , 1999 .

[10]  G. Vainikko The discrepancy principle for a class of regularization methods , 1982 .

[11]  G. Golub,et al.  Regularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers , 2004 .

[12]  J. Lovetri,et al.  Adapting the Normalized Cumulative Periodogram Parameter-Choice Method to the Tikhonov Regularization of 2-D/TM Electromagnetic Inverse Scattering Using Born Iterative Method , 2008 .

[13]  Marc Hoffmann,et al.  Nonlinear estimation for linear inverse problems with error in the operator , 2008, 0803.1956.

[14]  M. Nashed,et al.  Tikhonov regularization of nonlinear ill-posed problems with closed operators in Hilbert scales , 1997 .

[15]  Shuai Lu,et al.  Regularized Total Least Squares: Computational Aspects and Error Bounds , 2009, SIAM J. Matrix Anal. Appl..

[16]  U. Tautenhahn,et al.  Regularization of linear ill-posed problems with noisy right hand side and noisy operator , 2008 .

[17]  H. Engl,et al.  Johann Radon Institute for Computational and Applied Mathematics , 2004 .

[18]  Vladimir Koltchinskii,et al.  On inverse problems with unknown operators , 2001, IEEE Trans. Inf. Theory.

[19]  F. Natterer Error bounds for tikhonov regularization in hilbert scales , 1984 .

[20]  V. A. Morozov,et al.  Numerical parameter selection algorithms in the regularization method , 1973 .

[21]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[22]  A. G. Yagola,et al.  Image reconstruction technique and optical monitoring of the QSO2237+0305 from Maidanak Observatory in 2002–2003 , 2004 .

[23]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[24]  Rosemary A. Renaut,et al.  Efficient Algorithms for Solution of Regularized Total Least Squares , 2005, SIAM J. Matrix Anal. Appl..

[25]  U. Tautenhahn Optimal parameter choice for Tikhonov regularization in Hilbert scales , 1993 .

[26]  Sergei V. Pereverzev,et al.  A MODEL FUNCTION METHOD IN TOTAL LEAST SQUARES , 2008 .

[27]  T. Hohage,et al.  Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise , 2008 .

[28]  G. Vainikko The critical level of discrepancy in regularization methods , 1983 .

[29]  Markus Hegland,et al.  Variable hilbert scales and their interpolation inequalities with applications to tikhonov regularization , 1995 .

[30]  U. TAUTENHAHN,et al.  Dual Regularized Total Least Squares And Multi-Parameter Regularization , 2008 .

[31]  Andreas Neubauer,et al.  Tikhonov regularization of nonlinear III-posed problems in hilbert scales , 1992 .

[32]  Yu. I. Petunin,et al.  SCALES OF BANACH SPACES , 1966 .

[33]  D. Colton,et al.  A simple method using Morozov's discrepancy principle for solving inverse scattering problems , 1997 .

[34]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[35]  B. Hofmann,et al.  Optimization aspects of the generalized discrepancy principle in regularization , 1986 .

[36]  N. Hengartner,et al.  Adaptive estimation for inverse problems with noisy operators , 2005 .

[37]  Michele Piana,et al.  FIST: A fast visualizer for fixed-frequency acoustic and electromagnetic inverse scattering problems , 2006, Simul. Model. Pract. Theory.

[38]  Peter Mathé,et al.  Interpolation in variable Hilbert scales with application to inverse problems , 2006 .

[39]  Andreas Neubauer,et al.  An a Posteriori Parameter Choice for Tikhonov Regularization in Hilbert Scales Leading to Optimal Convergence Rates , 1988 .

[40]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[41]  V. V. Vasin,et al.  Some tendencies in the Tikhonov regularization of ill-posed problems , 2006 .

[42]  Sergei V. Pereverzev,et al.  Regularization in Hilbert scales under general smoothing conditions , 2005 .

[43]  C. Marteau REGULARIZATION OF INVERSE PROBLEMS WITH UNKNOWN OPERATOR , 2007 .

[44]  U. Tautenhahn,et al.  Error estimates for Tikhonov regularization in Hilbert scales , 1994 .