The local semicircle law for a general class of random matrices

We consider a general class of $N\times N$ random matrices whose entries $h_{ij}$ are independent up to a symmetry constraint, but not necessarily identically distributed. Our main result is a local semicircle law which improves previous results both in the bulk and at the edge. The error bounds are given in terms of the basic small parameter of the model, $\max_{i,j} \mathbb{E} \left|h_{ij}\right|^2$. As a consequence, we prove the universality of the local $n$-point correlation functions in the bulk spectrum for a class of matrices whose entries do not have comparable variances, including random band matrices with band width  $W\gg N^{1-\varepsilon_n}$ with some $\varepsilon_n>0$ and with a negligible mean-field component. In addition, we provide a coherent and pedagogical proof of the local semicircle law, streamlining and strengthening previous arguments.

[1]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[2]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[3]  Bernard Helffer,et al.  Equation de Schrödinger avec champ magnétique et équation de Harper , 1989 .

[4]  Y. Fyodorov,et al.  Scaling properties of localization in random band matrices: A sigma -model approach. , 1991, Physical review letters.

[5]  E. Davies The Functional Calculus , 1995 .

[6]  A. Guionnet,et al.  CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .

[7]  S. Chatterjee A generalization of the Lindeberg principle , 2005, math/0508519.

[8]  Ohad N. Feldheim,et al.  A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices , 2008, 0812.1961.

[9]  H. Yau,et al.  Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.

[10]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[11]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[12]  Jun Yin,et al.  The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.

[13]  H. Yau,et al.  Universality of random matrices and local relaxation flow , 2009, 0907.5605.

[14]  S. Péché,et al.  Bulk universality for Wigner matrices , 2009, 0905.4176.

[15]  H. Yau,et al.  Universality of Sine-Kernel for Wigner Matrices with a Small Gaussian Perturbation , 2009, 0905.2089.

[16]  Sasha Sodin,et al.  The spectral edge of some random band matrices , 2009, 0906.4047.

[17]  Horng-Tzer Yau,et al.  Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.

[18]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[19]  Jun Yin,et al.  Universality for generalized Wigner matrices with Bernoulli distribution , 2010, 1003.3813.

[20]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[21]  Antti Knowles,et al.  Quantum Diffusion and Delocalization for Band Matrices with General Distribution , 2010, 1005.1838.

[22]  H. Yau,et al.  Universality of local spectral statistics of random matrices , 2011, 1106.4986.

[23]  N. Pillai,et al.  Universality of covariance matrices , 2011, 1110.2501.

[24]  H. Yau,et al.  Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues , 2011, 1103.3869.

[25]  Jun Yin,et al.  Delocalization and Diffusion Profile for Random Band Matrices , 2012, 1205.5669.

[26]  T. Tao,et al.  Random matrices: Sharp concentration of eigenvalues , 2012, 1201.4789.

[27]  H. Yau,et al.  Spectral statistics of Erdős–Rényi graphs I: Local semicircle law , 2011, 1103.1919.

[28]  Claudio Cacciapuoti,et al.  Local Marchenko-Pastur law at the hard edge of sample covariance matrices , 2012, 1206.1730.

[29]  Antti Knowles,et al.  Averaging Fluctuations in Resolvents of Random Band Matrices , 2012, 1205.5664.