Design of a Novel Dual-Band Terahertz Metamaterial Absorber

We present a novel dual-band terahertz absorber formed by only a patterned U-shaped metallic ring and a metallic ground plane separated by a dielectric layer. Theoretical results show that the proposed absorber has two distinct absorption bands whose peaks are average over 98 %. Different from previous reports by combining the resonances of the complex structure (coplanar super-unit structure or stacked structure) to obtain the dual-band response, the proposed structure utilizes the LC resonance and dipolar response of the single patterned structure and thus making the proposed structure quite easy to be fabricated. The roles of the geometric parameters are investigated to explain the principle of absorption. Furthermore, the proposed concept applies to other types of absorber structure and can be readily extended to other frequency regimes for a host of applications such as detection, imaging, sensing, and selective thermal emitters.

[1]  Eleftherios N. Economou,et al.  Left-handed metamaterials: The fishnet structure and its variations , 2007 .

[2]  Harald Giessen,et al.  Plasmonic Building Blocks for Magnetic Molecules in Three‐Dimensional Optical Metamaterials , 2008 .

[3]  Anders Kristensen,et al.  Capacitance tuning of nanoscale split-ring resonators , 2010, Photonics Europe.

[4]  Harald Giessen,et al.  Plasmon Hybridization in Stacked Cut‐Wire Metamaterials , 2007 .

[5]  Willie J. Padilla,et al.  A dual band terahertz metamaterial absorber , 2010 .

[6]  Sailing He,et al.  Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime , 2010 .

[7]  David R. Smith,et al.  Terahertz plasmonic high pass filter , 2003 .

[8]  David R. Smith,et al.  Dual-band planar electric metamaterial in the terahertz regime. , 2008, Optics express.

[9]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[10]  Xiang Zhai,et al.  Theoretical Investigation of Broadband and Wide-Angle Terahertz Metamaterial Absorber , 2014, IEEE Photonics Technology Letters.

[11]  Somak Bhattacharyya,et al.  Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator , 2014 .

[12]  Nikolaos V. Kantartzis,et al.  Multi-band, highly absorbing, microwave metamaterial structures , 2014 .

[13]  D. Cumming,et al.  A terahertz polarization insensitive dual band metamaterial absorber. , 2011, Optics letters.

[14]  I. Gabitov,et al.  Polarization rotation by an rf-SQUID metasurface , 2015, 1501.01536.

[15]  Liang-yao Chen,et al.  Multi-band metamaterial absorber based on the arrangement of donut-type resonators. , 2013, Optics express.

[16]  Ying Liu,et al.  Multi-band metamaterial absorber made of multi-gap SRRs structure , 2012 .

[17]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[18]  Huaiwu Zhang,et al.  Dual band terahertz metamaterial absorber: Design, fabrication, and characterization , 2009 .

[19]  Houtong Chen Interference theory of metamaterial perfect absorbers. , 2011, Optics Express.

[20]  Nikolay I. Zheludev,et al.  Ultrafast all-optical switching via coherent modulation of metamaterial absorption , 2014 .

[21]  Xiang Zhai,et al.  A novel dual-band terahertz metamaterial absorber for a sensor application , 2015 .

[22]  Junpeng Guo,et al.  Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures , 2013 .

[23]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[24]  Yanxia Cui,et al.  A thin film broadband absorber based on multi-sized nanoantennas , 2011 .

[25]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[26]  Peter Uhd Jepsen,et al.  Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz , 2014 .

[27]  Tie Jun Cui,et al.  Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation , 2012 .

[28]  Sailing He,et al.  Ultra-broadband microwave metamaterial absorber , 2011, 1201.0062.

[29]  V. Lam,et al.  Perfect absorber metamaterials: Peak, multi-peak and broadband absorption , 2014 .

[30]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[31]  S. Anantha Ramakrishna,et al.  Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks , 2013 .

[32]  N. Fang,et al.  Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. , 2011, Nano letters.

[33]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[34]  Xiang Zhai,et al.  Polarization Tunable Terahertz Metamaterial Absorber , 2015, IEEE Photonics Journal.

[35]  Ortwin Hess,et al.  Overcoming losses with gain in a negative refractive index metamaterial. , 2010, Physical review letters.

[36]  Somak Bhattacharyya,et al.  Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band , 2013 .

[37]  Ben-Xin Wang,et al.  Metamaterial-Based Low-Conductivity Alloy Perfect Absorber , 2014, Journal of Lightwave Technology.

[38]  M. Kafesaki,et al.  Investigation of magnetic resonances for different split-ring resonator parameters and designs , 2005 .

[39]  Zhao-Liang Li,et al.  Broadband and ultrathin screen with magnetic substrate for microwave reflectivity reduction , 2012 .

[40]  Thomas Koschny,et al.  An efficient way to reduce losses of left-handed metamaterials. , 2008, Optics express.

[41]  T. Cui,et al.  Ultrathin multiband gigahertz metamaterial absorbers , 2011 .

[42]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[43]  Ata Khalid,et al.  Polarization insensitive, broadband terahertz metamaterial absorber. , 2011, Optics letters.

[44]  Sailing He,et al.  Omni-directional, broadband and polarization-insensitive thin absorber in the terahertz regime , 2009, 0906.2137.

[45]  D. R. Chowdhury,et al.  Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers , 2012, 1207.0540.

[46]  L. B. Lok,et al.  Polarization insensitive terahertz metamaterial absorber. , 2011, Optics letters.

[47]  David R. Smith,et al.  Terahertz compressive imaging with metamaterial spatial light modulators , 2014, Nature Photonics.

[48]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[49]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[50]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[51]  Zhen Tian,et al.  Modulating the fundamental inductive-capacitive resonance in asymmetric double-split ring terahertz metamaterials , 2011 .

[52]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[53]  T. Cui,et al.  Polarization-independent wide-angle triple-band metamaterial absorber. , 2011, Optics express.