PRECONDITIONING THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VARIABLE VISCOSITY *
暂无分享,去创建一个
[1] S. MacLachlan,et al. On iterative methods for the incompressible Stokes problem , 2011 .
[2] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[3] Michel Bercovier,et al. A finite-element method for incompressible non-Newtonian flows , 1980 .
[4] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[5] A. Wathen. Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .
[6] John W. Cahn,et al. On Spinodal Decomposition , 1961 .
[7] David Jacqmin,et al. Contact-line dynamics of a diffuse fluid interface , 2000, Journal of Fluid Mechanics.
[8] Maxim A. Olshanskii,et al. An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..
[9] Ilse C. F. Ipsen,et al. GMRES and the minimal polynomial , 1996 .
[10] T. Papanastasiou. Flows of Materials with Yield , 1987 .
[11] Yvan Notay,et al. Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations , 2012, SIAM J. Sci. Comput..
[12] Minh Do-Quang,et al. The splash of a ball hitting a liquid surface: Numerical simulation of the influence of wetting , 2007 .
[13] Maxim A. Olshanskii,et al. An Iterative Method for the Stokes-Type Problem with Variable Viscosity , 2009, SIAM J. Sci. Comput..
[14] S. Capizzano,et al. On an augmented Lagrangian-based preconditioning of Oseen type problems , 2011 .
[15] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[16] O. Axelsson. Solving the Stokes problem on a massively parallel computer , 1999 .
[17] S. Turek,et al. Finite element methods for the simulation of incompressible powder flow , 2005, Communications in Numerical Methods in Engineering.
[18] Timo Heister,et al. A Massively Parallel Finite Element Framework with Application to Incompressible Flows , 2011 .
[19] O. Axelsson. Iterative solution methods , 1995 .
[20] A. de Niet,et al. Two preconditioners for saddle point problems in fluid flows , 2007 .
[21] van der Waals , 2010 .
[22] Owe Axelsson,et al. Preconditioning of Boundary Value Problems Using Elementwise Schur Complements , 2009, SIAM J. Matrix Anal. Appl..
[23] K. R. Rajagopal,et al. Global existence of solutions for flows of fluids with pressure and shear dependent viscosities , 2002, Appl. Math. Lett..
[24] Maxim A. Olshanskii,et al. Pressure Schur Complement Preconditioners for the Discrete Oseen Problem , 2007, SIAM J. Sci. Comput..
[25] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .
[26] Philip M. Gresho,et al. The Finite Element Method in Viscous Incompressible Flows , 1989 .
[27] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .
[28] Owe Axelsson,et al. A general approach to analyse preconditioners for two-by-two block matrices , 2013, Numer. Linear Algebra Appl..
[29] Johannes K. Kraus,et al. Algebraic multilevel preconditioning of finite element matrices using local Schur complements , 2006, Numer. Linear Algebra Appl..
[30] Owe Axelsson,et al. Preconditioning of matrices partitioned in 2 × 2 block form: eigenvalue estimates and Schwarz DD for mixed FEM , 2010, Numer. Linear Algebra Appl..
[31] Owe Axelsson. Eigenvalue Estimates for Preconditioned Saddle Point Matrices , 2003, LSSC.
[32] Artem Napov,et al. An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..
[33] Paul J. Tackley,et al. Effects of strongly variable viscosity on three‐dimensional compressible convection in planetary mantles , 1996 .
[34] Minh Do-Quang,et al. Droplet dynamics in a bifurcating channel , 2010 .
[35] Y. Notay. An aggregation-based algebraic multigrid method , 2010 .
[36] K. R. Rajagopal,et al. Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities , 2003, Math. Comput. Simul..
[37] Ulrich R. Christensen,et al. 3‐D Convection With Variable Viscosity , 1991 .
[38] Maya Neytcheva,et al. Finite-element based sparse approximate inverses for block-factorized preconditioners , 2011, Adv. Comput. Math..
[39] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[40] M. Benzi,et al. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier , 2022 .
[41] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[42] Maya Neytcheva,et al. Element-by-Element Schur Complement Approximations for General Nonsymmetric Matrices of Two-by-Two Block Form , 2009, LSSC.
[43] Howard C. Elman,et al. Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..
[44] Maxim A. Olshanskii,et al. Field-of-Values Convergence Analysis of Augmented Lagrangian Preconditioners for the Linearized Navier-Stokes Problem , 2011, SIAM J. Numer. Anal..
[45] G. Amberg,et al. Modeling of dynamic wetting far from equilibrium , 2009 .
[46] Maya Neytcheva,et al. Solution methods for the Cahn–Hilliard equation discretized by conforming and non-conforming finite elements , 2011 .
[47] S. Börm,et al. ℋ︁‐LU factorization in preconditioners for augmented Lagrangian and grad‐div stabilized saddle point systems , 2012 .