The dynamics and high-energy emission of conductive gas clouds in supernova-driven galactic superwinds

Superwinds from starburst galaxies are multiphase outflows that sweep up and incorporate ambient galactic disc and halo gas. The interaction of this denser material with the more diffuse hot wind gas is thought to give rise to the O vi emission and absorption in the far ultraviolet (FUV) and the soft thermal X-ray emission observed in superwinds. In this paper, we present high-resolution hydrodynamical models of warm ionized clouds embedded in a superwind, and compare the O vi and soft X-ray properties to the existing observational data. These models include thermal conduction, which we show plays an important role in shaping both the dynamics and radiative properties of the resulting wind/cloud interaction. Heat conduction stabilizes the cloud by inhibiting the growth of Kelvin–Helmholtz and Rayleigh–Taylor instabilities, and also generates a shock wave at the cloud's surface that compresses the cloud. This dynamical behaviour influences the observable properties. We find that while O vi emission and absorption always arises in cloud material at the periphery of the cloud, most of the soft X-ray arises in the region between the wind bow shock and the cloud surface, and probes either wind or cloud material depending on the strength of conduction and the relative abundances of the wind with respect to the cloud. In general, only a small fraction (≲1 per cent) of the wind mechanical energy intersecting a cloud is radiated away at ultraviolet (UV) and X-ray wavelengths, with more wind energy going into accelerating the cloud. Clouds in relatively slow cool winds radiate a larger fraction of their energy, which are inconsistent with observational constraints. Models with heat conduction at Spitzer-levels are found to produce observational properties closer to those observed in superwinds than models with no thermal conduction, in particular, in terms of the O vi to X-ray luminosity ratio, but cloud life times are uncomfortably short (≲1 Myr) compared to the dynamical ages of real winds. We experimented with reducing the thermal conductivity for one set of model parameters, and found that even when we reduced conduction by a factor of 25 that the simulations retained the beneficial hydrodynamical stability and low O vi to X-ray luminosity ratio found in the Spitzer-level conductive models, while also having reduced evaporation rates. Although more work is required to simulate clouds for longer times and to investigate cloud acceleration and thermal conduction at sub-Spitzer levels in a wider range of models, we conclude that thermal conduction can no longer be ignored in superwinds.

[1]  F. Harlow,et al.  Triggering the Formation of Halo Globular Clusters with Galaxy Outflows , 2004, astro-ph/0408340.

[2]  C. Leitherer,et al.  Far-Ultraviolet Observations of Molecular Hydrogen in the Diffuse Interstellar Medium of Starburst Galaxies , 2004, astro-ph/0406378.

[3]  Ryoji Matsumoto,et al.  Magnetohydrodynamic Simulations of the Formation of Cold Fronts in Clusters of Galaxies Including Heat Conduction , 2004, astro-ph/0404160.

[4]  R. Indebetouw,et al.  O VI, N V, and C IV in the Galactic Halo. I. Velocity-Dependent Ionization Models , 2004, astro-ph/0403388.

[5]  R. Maiolino,et al.  Stellar and Gaseous Abundances in M82 , 2004, astro-ph/0401361.

[6]  T. M. Heckman,et al.  A High Spatial Resolution X-Ray and Hα Study of Hot Gas in the Halos of Star-forming Disk Galaxies. I. Spatial and Spectral Properties of the Diffuse X-Ray Emission , 2003, astro-ph/0306592.

[7]  P. Anninos,et al.  Radiative Shock-induced Collapse of Intergalactic Clouds , 2003, astro-ph/0311298.

[8]  C. Leitherer,et al.  Abundances in the Neutral Interstellar Medium of I Zw 18 from Far Ultraviolet Spectroscopic Explorer Observations , 2003 .

[9]  T. Heckman,et al.  Cooling in Coronal Gas in the M82 Starburst Superwind , 2003, astro-ph/0309245.

[10]  W. Oegerle,et al.  Probing O VI Emission in the Halos of Edge-on Spiral Galaxies , 2003, astro-ph/0304079.

[11]  J. Maron,et al.  Thermal Conduction and Particle Transport in Strong Magnetohydrodynamic Turbulence, with Application to Galaxy Cluster Plasmas , 2003, astro-ph/0303214.

[12]  C. Steidel,et al.  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview , 2002, astro-ph/0210314.

[13]  H. Rottgering,et al.  Evolution of clouds in radio galaxy cocoons , 2002, astro-ph/0209601.

[14]  Y. Ohyama,et al.  Decomposition of the Superwind in M 82 , 2002, astro-ph/0209442.

[15]  T. Heckman,et al.  Received; Accepted , 2001 .

[16]  S. Veilleux,et al.  Tightly Correlated X-Ray/Hα-emitting Filaments in the Superbubble and Large-Scale Superwind of NGC 3079 , 2002, astro-ph/0205508.

[17]  Leicester,et al.  High-resolution X-ray imaging and spectroscopy of the core of NGC 4945 with XMM-Newton and Chandra , 2002, astro-ph/0204361.

[18]  U. Gorti,et al.  Photoevaporation of Clumps in Photodissociation Regions , 2002, astro-ph/0204180.

[19]  T. Heckman,et al.  The Metal Content of Dwarf Starburst Winds: Results from Chandra Observations of NGC 1569 , 2002, astro-ph/0203513.

[20]  T. M. Heckman,et al.  Chandra Observations of NGC 253. II. On the Origin of Diffuse X-Ray Emission in the Halos of Starburst Galaxies , 2001, astro-ph/0111511.

[21]  N. Benı́tez,et al.  Spectral Evidence for Widespread Galaxy Outflows at z > 4 , 2001, astro-ph/0112095.

[22]  R. Narayan,et al.  Thermal Conduction in Clusters of Galaxies , 2001, astro-ph/0110567.

[23]  T. Boller,et al.  Chandra Observations of Markarian 273: Unveiling the Central Active Galactic Nucleus and the Extended Hot Gas Halo , 2001, astro-ph/0107559.

[24]  D. Breitschwerdt,et al.  Chandra Detection of a Hot Gaseous Corona around the Edge-on Galaxy NGC 4631 , 2001, astro-ph/0105541.

[25]  C. Leitherer,et al.  On the Escape of Ionizing Radiation from Starbursts , 2001, astro-ph/0105012.

[26]  M. Markevitch,et al.  Zooming in on the Coma Cluster with Chandra: Compressed Warm Gas in the Brightest Cluster Galaxies , 2001, astro-ph/0102483.

[27]  J. Cuby,et al.  The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics , 2001, astro-ph/0102456.

[28]  C. Leitherer,et al.  FUSE Observations of Outflowing O VI in the Dwarf Starburst Galaxy NGC 1705 , 2001, astro-ph/0102283.

[29]  S. Veilleux,et al.  Jet- and Wind-driven Ionized Outflows in the Superbubble and Star-forming Disk of NGC 3079 , 2001, astro-ph/0101010.

[30]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[31]  Timothy M. Heckman,et al.  Accepted for publication in the Astronomical Journal Preprint typeset using L ATEX style emulateapj v. 20/04/00 CHANDRA OBSERVATIONS OF NGC 253: NEW INSIGHTS INTO THE NATURE OF , 2000 .

[32]  A. Fabian,et al.  Chandra constraints on the thermal conduction in the intracluster plasma of A2142 , 2000, astro-ph/0007397.

[33]  T. Oosterbroek,et al.  Ambiguities in Fits to the Complex X-Ray Spectra of Starburst Galaxies , 2000, astro-ph/0003020.

[34]  T. Heckman,et al.  Absorption-Line Probes of Gas and Dust in Galactic Superwinds , 2000, astro-ph/0002526.

[35]  D. Strickland,et al.  Starburst-driven galactic winds — I. Energetics and intrinsic X-ray emission , 2000, astro-ph/0001395.

[36]  M. Dopita,et al.  Jet-induced Emission-Line Nebulosity and Star Formation in the High-Redshift Radio Galaxy 4C 41.17 , 1999, astro-ph/9909218.

[37]  T. Heckman,et al.  An X-Ray MiniSurvey of Nearby Edge-on Starburst Galaxies. II. The Question of Metal Abundance , 1999, astro-ph/9911446.

[38]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[39]  F. Brighenti,et al.  Galactic winds and circulation of the interstellar medium in dwarf galaxies , 1999, astro-ph/9907005.

[40]  T. Heckman,et al.  Very Extended X-Ray and Hα Emission in M82: Implications for the Superwind Phenomenon , 1999, astro-ph/9904227.

[41]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[42]  J. Bally,et al.  Hα Emission 11 Kiloparsecs above M82 , 1999 .

[43]  G. Hensler,et al.  Evaporation and Condensation Processes of Giant Molecular Clouds in a Hot Plasma , 2000, astro-ph/0001448.

[44]  Kimberly Ann Weaver,et al.  An X-Ray Minisurvey of Nearby Edge-on Starburst Galaxies. I. The Data , 1998 .

[45]  C. Leitherer,et al.  Far-Ultraviolet Spectra of Starburst Galaxies: Stellar Population and the Kinematics of the Interstellar Medium , 1998 .

[46]  D. Strickland,et al.  Predicting X-ray emission from wind-blown bubbles — limitations of fits to ROSAT spectra , 1998, astro-ph/9803065.

[47]  M. Dahlem GASEOUS HALOS OF LATE-TYPE SPIRAL GALAXIES , 1997 .

[48]  T. Heckman Starbursts: Lessons for the Origin and Evolution of Galaxies and the Inter-Galactic Medium , 1997, astro-ph/9708263.

[49]  Andrew M. Read,et al.  ROSAT PSPC observations of nearby spiral galaxies — I. The data , 1997 .

[50]  Dinshaw S. Balsara,et al.  Mass Loading and Collimation of Galactic Superwinds , 1996 .

[51]  T. Heckman,et al.  Ionized gas in the halos of edge-on starburst galaxies: Evidence for supernova-driven superwinds , 1996 .

[52]  J. Bland-Hawthorn Multi-wavelength Observations of Galactic Winds , 1995, Publications of the Astronomical Society of Australia.

[53]  T. Heckman,et al.  Ionized Gas in the Halos of Edge-on, Starburst Galaxies: Data and Results , 1995 .

[54]  Candace Lee Heald,et al.  Building Bridges between Teachers and Resources. , 1995 .

[55]  Duane A. Liedahl,et al.  New Calculations of Fe L-Shell X-Ray Spectra in High-Temperature Plasmas , 1995 .

[56]  Dinshaw S. Balsara,et al.  DYNAMICS AND X-RAY EMISSION OF A GALACTIC SUPERWIND INTERACTING WITH DISK AND HALO GAS , 1994 .

[57]  R. Klein,et al.  On the hydrodynamic interaction of shock waves with interstellar clouds. 1: Nonradiative shocks in small clouds , 1994 .

[58]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[59]  Andrea FerraraYuri Shchekinov Dynamics of conductive/cooling fronts : cloud implosion and thermal solitons , 1993, astro-ph/9307034.

[60]  A. Phillips,et al.  Nuclear and large-scale outflow in NGC 1808 , 1993 .

[61]  Frank H. Shu,et al.  The physics of astrophysics. , 1992 .

[62]  F. Shu Physics of Astrophysics, Vol. II: Gas Dynamics , 1991 .

[63]  George K. Miley,et al.  On the nature and implications of starburst-driven galactic superwinds , 1990 .

[64]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[65]  D. Cioffi,et al.  Overpressured cocoons in extragalactic radio sources , 1989 .

[66]  Y. Shchekinov The induced star formation: Combustion waves and star bursts , 1989 .

[67]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[68]  J. Bland,et al.  Large-scale bipolar wind in M82 , 1988, Nature.

[69]  R. McCray,et al.  Superbubbles in disk galaxies , 1988 .

[70]  P. McCarthy,et al.  Evidence for Large-Scale Winds from Starburst Galaxies. I. The Nature of the Ionized Gas in M82 and NGC 253 , 1987 .

[71]  L. Armus AN OPTICAL INVESTIGATION OF POWERFUL FAR-INFRARED GALAXIES , 1987 .

[72]  R. Chevalier,et al.  Highly ionized atoms in cooling gas , 1986 .

[73]  R. Chevalier,et al.  Wind from a starburst galaxy nucleus , 1985, Nature.

[74]  G. Trinchieri,et al.  The Complex X-ray Emission of NGC 253 , 1984 .

[75]  Richard E. Griffiths,et al.  X-ray emission from M82 , 1984 .

[76]  Dan McCammon,et al.  Interstellar photoelectric absorption cross-sections, 0.03-10 keV , 1983 .

[77]  J. Ostriker,et al.  Supernova remnant revolution in an inhomogeneous medium. I - Numerical models , 1981 .

[78]  J. Ostriker,et al.  Galaxy formation in an intergalactic medium dominated by explosions , 1981 .

[79]  M. L. Norman,et al.  A new calculation on rotating protostar collapse , 1980 .

[80]  J. Bregman,et al.  Radiative accretion flow onto giant galaxies in clusters , 1978 .

[81]  K. Taylor,et al.  M82: the exploding galaxy? , 1978, Nature.

[82]  R. Weaver,et al.  Interstellar bubbles. II - Structure and evolution , 1977 .

[83]  Barham W. Smith,et al.  Soft X-ray spectrum of a hot plasma. , 1977 .

[84]  L. Cowie,et al.  The evaporation of spherical clouds in a hot gas. II - Effects of radiation. [for supernova remnants, interstellar medium and galactic clusters , 1977 .

[85]  L. Cowie,et al.  The evaporation of spherical clouds in a hot gas. I - Classical and saturated mass loss rates , 1977 .

[86]  P. Woodward Shock-driven implosion of interstellar gas clouds and star formation. , 1976 .

[87]  L. Cowie,et al.  The interaction between the blast wave of a supernova remnant and interstellar clouds. , 1975 .

[88]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .