CoQMTU: A Higher-Order Type Theory with a Predicative Hierarchy of Universes Parametrized by a Decidable First-Order Theory

We study a complex type theory, a Calculus of Inductive Constructions with a predicative hierarchy of universes and a first-order theory T built in its conversion relation. The theory T is specified abstractly, by a set of constructors, a set of defined symbols, axioms expressing that constructors are free and defined symbols completely defined, and a generic elimination principle relying on crucial properties of first-order structures satisfying the axioms. We first show that CoqMTU enjoys all basic meta-theoretical properties of such calculi, confluence, subject reduction and strong normalization when restricted to weak-elimination, implying the decidability of type-checking in this case as well as consistency. The case of strong elimination is left open.