Large scale inequality constrained optimization and control

Since Karmarkar's work (1984), interior point methods in linear programming have triggered a tremendous amount of activity. The applicability of interior-point methods for the efficient solution of nonlinear programming problems has also been of interest, and has shown huge potential benefits. This has tremendous impact in process control, especially since optimal control and model predictive control problems, hitherto considered unsolvable, could be solved in a realistic time. In this article, we outline some recent developments in interior point methods for the solution of linear and nonlinear programming problems followed by a summary of the recent work for applying these concepts in control. We conclude with a review of current status and a discussion of future directions.

[1]  George H. Staus,et al.  Interior point SQP strategies for large-scale, structured process optimization problems , 1999 .

[2]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[3]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[4]  Stephen J. Wright,et al.  Application of Interior-Point Methods to Model Predictive Control , 1998 .

[5]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[6]  Stephen P. Boyd,et al.  Control applications of nonlinear convex programming , 1998 .

[7]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[8]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[9]  Lorenz T. Biegler,et al.  Global optimization for identification , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[10]  João S. Albuquerque,et al.  Interior point SQP strategies for structured process optimization problems , 1997 .

[11]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[12]  T. Badgwell Robust model predictive control of stable linear systems , 1997 .

[13]  James B. Rawlings,et al.  Optimization Problems in Model Predictive Control , 1997 .

[14]  T. A. Badgwell,et al.  An Overview of Industrial Model Predictive Control Technology , 1997 .

[15]  J. A. Bryson Optimal control-1950 to 1985 , 1996 .

[16]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[17]  Stephen J. Wright,et al.  A superquadratic infeasible-interior-point method for linear complementarity problems , 1994, Math. Program..

[18]  Boris Kalitventzeff,et al.  Validation of measurement data using an interior point SQP , 1996 .

[19]  L. Biegler,et al.  Decomposition algorithms for on-line estimation with nonlinear DAE models , 1995 .

[20]  JayHyung Lee,et al.  Nonlinear model predictive control of the Tennessee Eastman challenge process , 1995 .

[21]  JayHyung Lee,et al.  Nonlinear modeling and state estimation for the Tennessee Eastman challenge process , 1995 .

[22]  Jorge Nocedal,et al.  Numerical Experience with a Reduced Hessian Method for Large Scale Constrained Optimization , 1995, SIAM J. Optim..

[23]  Yin Zhang,et al.  On polynomiality of the Mehrotra-type predictor—corrector interior-point algorithms , 1995, Math. Program..

[24]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[25]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[26]  D. K. Varvarezos,et al.  Multiperiod design optimization with SQP decomposition , 1994 .

[27]  L. Ghaoui,et al.  History of linear matrix inequalities in control theory , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[28]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[29]  Iqbal M. Mujtaba,et al.  Optimal operation of multicomponent batch distillation—multiperiod formulation and solution , 1993 .

[30]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..

[31]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..

[32]  Sanjay Mehrotra,et al.  Quadratic Convergence in a Primal-Dual Method , 1993, Math. Oper. Res..

[33]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[34]  James B. Rawlings,et al.  Model predictive control with linear models , 1993 .

[35]  Vassilios Vassiliadis,et al.  Computational solution of dynamic optimization problems with general differential-algebraic constraints , 1993 .

[36]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[37]  Stephen J. Wright Stable Parallel Algorithms for Two-Point Boundary Value Problems , 1992, SIAM J. Sci. Comput..

[38]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[39]  I. Lustig,et al.  Computational experience with a primal-dual interior point method for linear programming , 1991 .

[40]  Lorenz T. Biegler,et al.  Iterative linear programming strategies for constrained simulation , 1991 .

[41]  D. Bertsekas,et al.  Efficient dynamic programming implementations of Newton's method for unconstrained optimal control problems , 1989 .

[42]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[43]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[44]  J. E. Cuthrell,et al.  Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .

[45]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[46]  Michael A. Saunders,et al.  On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..

[47]  Leon S. Lasdon,et al.  An Improved Successive Linear Programming Algorithm , 1985 .

[48]  Dieter Kraft,et al.  On Converting Optimal Control Problems into Nonlinear Programming Problems , 1985 .

[49]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[50]  D. I. Jones,et al.  Comparison of optimization algorithms , 1984 .

[51]  Philip E. Gill,et al.  User's guide for SOL/QPSOL: a Fortran package for quadratic programming , 1983 .

[52]  L. Petzold A description of dassl: a differential/algebraic system solver , 1982 .

[53]  Michael A. Saunders,et al.  A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints , 1982 .

[54]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[55]  Richard Weiss,et al.  SOLVEBLOK: A Package for Solving Almost Block Diagonal Linear Systems , 1980, TOMS.

[56]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[57]  H. Goldstine A Branch of Mathematics. (Book Reviews: A History of the Calculus of Variations from the 17th through the 19th Century) , 1980 .

[58]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[59]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[60]  W. Kwon,et al.  A modified quadratic cost problem and feedback stabilization of a linear system , 1977 .

[61]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[62]  D. Kleinman,et al.  An easy way to stabilize a linear constant system , 1970 .

[63]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[64]  R.W.H. Sargent,et al.  Off Line Computation of Optimum Controls for a Plate Distillation Column* Calcul en dehors du circuit des commandes optimales pour une colonne de distillation h plateaux Off-line-Berechnung optimaler Regelungen f'tir den Boden einer Destillationskolonne , 1970 .

[65]  E. Polak,et al.  Theory of optimal control and mathematical programming , 1969 .

[66]  R. Bellman Dynamic Programming , 1957, Science.

[67]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .

[68]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .