Complex Gaussian quadrature of oscillatory integrals

We construct and analyze Gauss-type quadrature rules with complex- valued nodes and weights to approximate oscillatory integrals with stationary points of high order. The method is based on substituting the original interval of integration by a set of contours in the complex plane, corresponding to the paths of steepest descent. Each of these line integrals shows an exponentially decaying behaviour, suitable for the application of Gaussian rules with non-standard weight functions. The results differ from those in previous research in the sense that the constructed rules are asymptotically optimal, i.e., among all known methods for oscillatory integrals they deliver the highest possible asymptotic order of convergence, relative to the required number of evaluations of the integrand.

[1]  Daan Huybrechs,et al.  The Construction of cubature rules for multivariate highly oscillatory integrals , 2007, Math. Comput..

[2]  Lloyd N. Trefethen,et al.  Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..

[3]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[4]  David Levin,et al.  Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .

[5]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[6]  Ronald Cools,et al.  Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.

[7]  Maurice Duits,et al.  Painlevé I asymptotics for orthogonal polynomials with respect to a varying quartic weight , 2006, math/0605201.

[8]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[9]  Gradimir V. Milovanović A Class of Orthogonal Polynomials on the Radial Rays in the Complex Plane , 1997 .

[10]  K T R Davies,et al.  Complex-plane methods for evaluating highly oscillatory integrals in nuclear physics. II , 1988 .

[11]  Isaac Newton,et al.  Highly Oscillatory Problems : Computation , Theory and Applications , 2022 .

[12]  Nico M. Temme,et al.  Numerical methods for special functions , 2007 .

[13]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[14]  A. Iserles,et al.  Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  D. S. Jones,et al.  Asymptotic Behavior of Integrals , 1972 .

[16]  A. Iserles,et al.  On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation , 2004 .

[17]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[18]  Roderick Wong,et al.  Asymptotic approximations of integrals , 1989, Classics in applied mathematics.

[19]  Sheehan Olver,et al.  Moment-free numerical integration of highly oscillatory functions , 2006 .

[20]  Daan Huybrechs,et al.  On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..

[21]  F. Olver Asymptotics and Special Functions , 1974 .

[22]  S. Chandler-Wilde,et al.  Efficient calculation of the green function for acoustic propagation above a homogeneous impedance plane , 1995 .

[23]  Doron S. Lubinsky,et al.  Orthogonal Polynomials for Exponential Weights , 2001 .

[24]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[25]  Arno B. J. Kuijlaars Review of Orthogonal polynomials for exponential weights, CMS books in mathematics by Eli Lenin, Doron S. Lubinsky Springer, New York, 2001 , 2005 .