Nanoporous graphene as a reverse osmosis membrane: Recent insights from theory and simulation

Abstract In this review, we examine the potential and the challenges of designing an ultrathin reverse osmosis (RO) membrane from graphene, focusing on the role of computational methods in designing, understanding, and optimizing the relationship between atomic structure and RO performance. In recent years, graphene has emerged as a promising material for improving the performance of RO. Beginning at the atomic scale and extending to the RO plant scale, we review applications of computational research that have explored the structure, properties and potential performance of nanoporous graphene in the context of RO desalination.

[1]  Baoxia Mi,et al.  Enabling graphene oxide nanosheets as water separation membranes. , 2013, Environmental science & technology.

[2]  Sankar Nair,et al.  Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations. , 2010, Journal of the American Chemical Society.

[3]  Xianqiao Wang,et al.  Molecular Dynamics Study of Programmable Nanoporous Graphene , 2014 .

[4]  Sangho Lee,et al.  A simplified simulation model of RO systems for seawater desalination , 2009 .

[5]  Francois Gygi,et al.  Towards an assessment of the accuracy of density functional theory for first principles simulations of water. II. , 2004, The Journal of chemical physics.

[6]  S. Rempe,et al.  Ion Rejection by Nanoporous Membranes in Pressure-Driven Molecular Dynamics Simulations. , 2008, Journal of computational and theoretical nanoscience.

[7]  F. Müller-Plathe,et al.  How Thick is the Interphase in an Ultrathin Polymer Film? Coarse-Grained Molecular Dynamics Simulations of Polyamide-6,6 on Graphene , 2013 .

[8]  Ronan K. McGovern,et al.  Quantifying the potential of ultra-permeable membranes for water desalination , 2014 .

[9]  Ahmad Fauzi Ismail,et al.  Graphene-based nanomaterial: The state-of-the-art material for cutting edge desalination technology , 2015 .

[10]  S. Stuart,et al.  Bond-order potentials with split-charge equilibration: application to C-, H-, and O-containing systems. , 2012, The Journal of chemical physics.

[11]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[12]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[13]  Guang-Can Guo,et al.  Quantum computation with graphene nanoribbon , 2008, 0808.1618.

[14]  F. Keil Multiscale modelling in computational heterogeneous catalysis. , 2012, Topics in current chemistry.

[15]  Bobby G. Sumpter,et al.  Tunable water desalination across graphene oxide framework membranes. , 2014, Physical chemistry chemical physics : PCCP.

[16]  Aleksei Aksimentiev,et al.  Assessing graphene nanopores for sequencing DNA. , 2012, Nano letters.

[17]  Menachem Elimelech,et al.  A novel approach for modeling concentration polarization in crossflow membrane filtration based on the equivalence of osmotic pressure model and filtration theory , 1998 .

[18]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[19]  J. Grossman Benchmark quantum Monte Carlo calculations , 2002 .

[20]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[21]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[22]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[23]  Fu-Kuo Chang,et al.  Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators , 1992 .

[24]  Marcus Mueller,et al.  Biological and synthetic membranes: What can be learned from a coarse-grained description? , 2006 .

[25]  K. Hata,et al.  Subnanometer vacancy defects introduced on graphene by oxygen gas. , 2014, Journal of the American Chemical Society.

[26]  Jiaye Su,et al.  Asymmetric transport of water molecules through a hydrophobic conical channel , 2014 .

[27]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[28]  Ken Rainwater,et al.  Energy analysis and efficiency assessment of reverse osmosis desalination process , 2011 .

[29]  Miao Yu,et al.  Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation , 2013, Science.

[30]  S. Meng,et al.  Transport behavior of water molecules through two-dimensional nanopores. , 2014, The Journal of chemical physics.

[31]  R. Kosloff Time-dependent quantum-mechanical methods for molecular dynamics , 1988 .

[32]  B. Corry,et al.  How does overcoordination create ion selectivity? , 2013, Biophysical chemistry.

[33]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[34]  Ted Belytschko,et al.  Multiscale coupling schemes spanning the quantum mechanical, atomistic forcefield, and continuum regimes , 2008 .

[35]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[36]  Jae Kwan Lee,et al.  Molecular engineering of organic sensitizers for solar cell applications. , 2006, Journal of the American Chemical Society.

[37]  P. Wallace The Band Theory of Graphite , 1947 .

[38]  Chris Park,et al.  The Environment , 2010 .

[39]  L. Hedin,et al.  Effects of Electron-Electron and Electron-Phonon Interactions on the One-Electron States of Solids , 1969 .

[40]  Ho Jung Hwang,et al.  Gigahertz actuator of multiwall carbon nanotube encapsulating metallic ions: molecular dynamics simulations , 2004 .

[41]  Jung-Hyun Lee,et al.  Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. , 2013, ACS applied materials & interfaces.

[42]  S. Dai,et al.  Porous graphene as the ultimate membrane for gas separation. , 2009, Nano letters.

[43]  Haiping Fang,et al.  Ion Enrichment on the Hydrophobic Carbon-based Surface in Aqueous Salt Solutions due to Cation-π Interactions , 2013, Scientific Reports.

[44]  Fabrication of nanopores in a graphene sheet with heavy ions: A molecular dynamics study , 2013, 1308.3305.

[45]  Robert Dominko,et al.  Beyond One-Electron Reaction in Li Cathode Materials: Designing Li2MnxFe1-xSiO4 , 2007 .

[46]  Linda Zou,et al.  Recent developments in forward osmosis : opportunities and challenges. , 2012 .

[47]  A. Harju,et al.  Interaction of chlorine with Stone-Wales defects in graphene and carbon nanotubes, and thermodynamical prospects of chlorine-induced nanotube unzipping , 2013, 1305.5091.

[48]  Vivek B Shenoy,et al.  Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene , 2010, Science.

[49]  Erik W Draeger,et al.  Towards an assessment of the accuracy of density functional theory for first principles simulations of water. , 2004, The Journal of chemical physics.

[50]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[51]  Q. Zheng,et al.  On the Fracture of Supported Graphene Under Pressure , 2013 .

[52]  Michael Young,et al.  CHARTING OUR WATER FUTURE: Economic frameworks to inform decision-making , 2015 .

[53]  N. Aluru,et al.  Molecular and continuum hydrodynamics in graphene nanopores , 2013 .

[54]  Anthony G. Fane,et al.  Unsteady-state shear strategies to enhance mass-transfer for the implementation of ultrapermeable membranes in reverse osmosis: A review , 2015 .

[55]  Ben Corry,et al.  What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation? , 2014, Small.

[56]  Zhiping Xu,et al.  Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes , 2013, Nature Communications.

[57]  James E. Miller,et al.  Review of Water Resources and Desalination Technologies , 2003 .

[58]  Benoît Roux,et al.  Molecular dynamics study of a polymeric reverse osmosis membrane. , 2009, The journal of physical chemistry. B.

[59]  D. R. Paul,et al.  Free-standing graphene oxide thin films assembled by a pressurized ultrafiltration method for dehydration of ethanol , 2014 .

[60]  Mark S.P. Sansom,et al.  Carbon nanotube/detergent interactions via coarse-grained molecular dynamics. , 2007, Nano letters.

[61]  David Cohen-Tanugi,et al.  Mechanical strength of nanoporous graphene as a desalination membrane. , 2014, Nano letters.

[62]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[63]  Dimitris E. Papantonis,et al.  A simulation-optimisation programme for designing hybrid energy systems for supplying electricity and fresh water through desalination to remote areas , 2001 .

[64]  W. Kang,et al.  Ion selection of charge-modified large nanopores in a graphene sheet. , 2013, The Journal of chemical physics.

[65]  Jing Kong,et al.  Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. , 2014, Nano letters.

[66]  B. Corry,et al.  Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na(+) and K(+). , 2013, ACS nano.

[67]  Yilun Liu,et al.  Mechanical properties of nanoporous graphene membrane , 2014 .

[68]  A. Striolo,et al.  Simulation insights for graphene-based water desalination membranes. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[69]  Ben Corry,et al.  Designing carbon nanotube membranes for efficient water desalination. , 2008, The journal of physical chemistry. B.

[70]  P. Král,et al.  Dynamics of ion binding to graphene nanostructures , 2013 .

[71]  Hangjun Lu,et al.  Water permeation through single-layer graphyne membrane. , 2013, The Journal of chemical physics.

[72]  Martin L Dunn,et al.  Ultrastrong adhesion of graphene membranes. , 2011, Nature nanotechnology.

[73]  M. Engelhardt,et al.  Small-scale thermal seawater desalination simulation and optimization of system design , 1999 .

[74]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[75]  G. Shi,et al.  Nanoporous graphene materials , 2014 .

[76]  Liyi Shi,et al.  Preparation and desalination performance of multiwall carbon nanotubes , 2006 .

[77]  Nicholas Petrone,et al.  High-Strength Chemical-Vapor–Deposited Graphene and Grain Boundaries , 2013, Science.

[78]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[79]  Feng Yan,et al.  Two-dimensional material membranes: an emerging platform for controllable mass transport applications. , 2014, Small.

[80]  R. P.,et al.  Band Structure of Graphite , 2011 .

[81]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[82]  Erich A. Müller,et al.  Purification of water through nanoporous carbon membranes: a molecular simulation viewpoint , 2013 .

[83]  Narayana R Aluru,et al.  Water Transport through Ultrathin Graphene , 2010 .

[84]  N. Aluru,et al.  Ion transport in sub-5-nm graphene nanopores. , 2014, The Journal of chemical physics.

[85]  David Cohen-Tanugi,et al.  Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. , 2014, The Journal of chemical physics.

[86]  Y. Kitagawa,et al.  DFT calculations for chlorine elimination from chlorine-adsorbed gold clusters by hydrogen , 2013 .

[87]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[88]  N. Aluru,et al.  Coarse-Grained Potential Model for Structural Prediction of Confined Water. , 2012, Journal of chemical theory and computation.

[89]  K. Mahmoud,et al.  Functional graphene nanosheets: The next generation membranes for water desalination , 2015 .

[90]  Menachem Elimelech,et al.  Influence of Crossflow Membrane Filter Geometry and Shear Rate on Colloidal Fouling in Reverse Osmosis and Nanofiltration Separations , 2002 .

[91]  Bao-hang Han,et al.  A general and scalable synthesis approach to porous graphene , 2014, Nature Communications.

[92]  Jae-Young Choi,et al.  Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes , 2013, Science.

[93]  George M. Ayoub,et al.  Reverse osmosis technology for water treatment: State of the art review , 2011 .

[94]  Akansha Saxena,et al.  Multisite Ion Models That Improve Coordination and Free Energy Calculations in Molecular Dynamics Simulations. , 2013, Journal of chemical theory and computation.

[95]  S. Paddison,et al.  Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. , 2004, Chemical reviews.

[96]  G. Compagnini,et al.  Ion beam induced defects in graphene: Raman spectroscopy and DFT calculations , 2011 .

[97]  Grégory Pandraud,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[98]  T. Arnot,et al.  A review of reverse osmosis membrane materials for desalinationDevelopment to date and future poten , 2011 .

[99]  Werner Karl Schomburg,et al.  Introduction to Microsystem Design , 2011 .

[100]  T. Belytschko,et al.  Two quantum mechanical/molecular mechanical coupling schemes appropriate for fracture mechanics studies , 2007 .

[101]  G. Hummer,et al.  Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. , 2005, Biophysical journal.

[102]  Shenqiang Ren,et al.  Nanocarbon-based photovoltaics. , 2012, ACS nano.

[103]  W. M. Leevy,et al.  Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. , 2004, Chemical reviews.

[104]  B. Corry,et al.  Thermostat choice significantly influences water flow rates in molecular dynamics studies of carbon nanotubes , 2015 .

[105]  W. Akl,et al.  Ab Initio Density Functional Theory Investigation of the Interaction between Carbon Nanotubes and Water Molecules during Water Desalination Process , 2013 .

[106]  J. Gai,et al.  An ultrafast water transport forward osmosis membrane: porous graphene , 2014 .

[107]  Chuyang Y. Tang,et al.  Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane--mechanisms and implications. , 2012, Environmental science & technology.

[108]  Shyam S. Sablani,et al.  Concentration polarization in ultrafiltration and reverse osmosis: a critical review , 2001 .

[109]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[110]  K. Morohoshi,et al.  Modeling gas permeation through membranes by kinetic Monte Carlo: applications to H2, O2, and N2 in hydrated Nafion®. , 2011, The Journal of chemical physics.

[111]  S. Taioli Computational study of graphene growth on copper by first-principles and kinetic Monte Carlo calculations , 2014, Journal of Molecular Modeling.

[112]  U. Rothlisberger,et al.  Insights into intrastrand cross-link lesions of DNA from QM/MM molecular dynamics simulations. , 2012, Journal of the American Chemical Society.

[113]  K. Geethalakshmi,et al.  Suitability of amorphous TiO2 nanoparticles as a photoelectrode in dye sensitized solar cells: A DFT–TDDFT study , 2013 .

[114]  Chao Gao,et al.  Ultrathin Graphene Nanofiltration Membrane for Water Purification , 2013 .

[115]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[116]  Atomistic study on the strength of symmetric tilt grain boundaries in graphene , 2012 .

[117]  Boyang Wang,et al.  Selective ion passage through functionalized graphene nanopores. , 2008, Journal of the American Chemical Society.

[118]  J. Grossman,et al.  Water desalination across nanoporous graphene. , 2012, Nano letters.

[119]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.