The Impressive Power of Stopwatches

In this paper we define and study the class of stopwatch automata which are timed automata augmented with stopwatches and unobservable behaviour. In particular, we investigate the expressive power of this class of automata, and show as a main result that any finite or infinite timed language accepted by a linear hybrid automaton is also acceptable by a stopwatch automaton. The consequences of this result are two-fold: firstly, it shows that the seemingly minor upgrade from timed automata to stopwatch automata immediately yields the full expressive power of linear hybrid automata. Secondly, reachability analysis of linear hybrid automata may effectively be reduced to reachability analysis of stopwatch automata. This, in turn, may be carried out using an easy (over-approximating) extension of the efficient reachability analysis for timed automata to stopwatch automata. We report on preliminary experiments on analyzing translations of linear hybrid automata using a stopwatch-extension of the real-time verification tool UPPAAL.

[1]  Patricia Bouyer,et al.  Expressiveness of Updatable Timed Automata , 2000, MFCS.

[2]  Joseph Sifakis,et al.  Integration Graphs: A Class of Decidable Hybrid Systems , 1992, Hybrid Systems.

[3]  Sergio Yovine,et al.  KRONOS: a verification tool for real-time systems , 1997, International Journal on Software Tools for Technology Transfer.

[4]  Patricia Bouyer,et al.  Are Timed Automata Updatable? , 2000, CAV.

[5]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[6]  Thomas A. Henzinger,et al.  Discrete-Time Control for Rectangular Hybrid Automata , 1997, ICALP.

[7]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[8]  Robert L. Grossman,et al.  Timed Automata , 1999, CAV.

[9]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[10]  Ahmed Bouajjani,et al.  Verifying omega-Regular Properties for a Subclass of Linear Hybrid Systems , 1995, CAV.

[11]  Thomas A. Henzinger,et al.  Automatic symbolic verification of embedded systems , 1993, 1993 Proceedings Real-Time Systems Symposium.

[12]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[13]  Paul Gastin,et al.  Removing epsilon-Transitions in Timed Automata , 1997, STACS.

[14]  Paul Gastin,et al.  On the Power of Non-Observable Actions in Timed Automata , 1996, STACS.

[15]  Pravin Varaiya,et al.  Decidability of Hybrid Systems with Rectangular Differential Inclusion , 1994, CAV.

[16]  Paul Gastin,et al.  Characterization of the Expressive Power of Silent Transitions in Timed Automata , 1998, Fundam. Informaticae.

[17]  Amir Pnueli,et al.  Data-Structures for the Verification of Timed Automata , 1997, HART.

[18]  Laurent Fribourg,et al.  Automated Verification of a Parametric Real-Time Program: The ABR Conformance Protocol , 1999, CAV.

[19]  Wang Yi,et al.  Efficient verification of real-time systems: compact data structure and state-space reduction , 1997, Proceedings Real-Time Systems Symposium.

[20]  Kārlis Čerāns,et al.  Algorithmic problems in analysis of real time system specifications , 1992 .

[21]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[22]  Thomas A. Henzinger,et al.  State Equivalences for Rectangular Hybrid Automata , 1996, CONCUR.

[23]  Kim Guldstrand Larsen,et al.  Experimental Batch Plant: VHS Case Study 1 using Timed Automata and UPPAAL , 1999 .

[24]  Pravin Varaiya,et al.  Suspension Automata: A Decidable Class of Hybrid Automata , 1994, CAV.

[25]  Thomas A. Henzinger,et al.  The Expressive Power of Clocks , 1995, ICALP.

[26]  Thomas A. Henzinger,et al.  The Observational Power of Clocks , 1994, CONCUR.

[27]  Wang Yi,et al.  Efficient Timed Reachability Analysis Using Clock Difference Diagrams , 1998, CAV.