Reduced-order surrogate models for scalar-tensor gravity in the strong field regime and applications to binary pulsars and GW170817

We investigate the scalar-tensor gravity of Damour and Esposito-Far\`ese (DEF), which predicts nontrivial phenomena in the nonperturbative strong-field regime for neutron stars (NSs). Instead of solving the modified Tolman-Oppenheimer-Volkoff equations, we construct reduced-order surrogate models, coded in the pystgrom package, to predict the relations of a NS radius, mass, and effective scalar coupling to its central density. Our models are accurate at $\ensuremath{\sim}1%$ level and speed up large-scale calculations by 2 orders of magnitude. As an application, we use pystgrom and Markov-chain Monte Carlo techniques to constrain parameters in the DEF theory, with five well-timed binary pulsars, the binary NS (BNS) inspiral GW170817, and a hypothetical BNS inspiral in the Advanced LIGO and next-generation GW detectors. In the future, as more binary pulsars and BNS mergers are detected, our surrogate models will be helpful in constraining strong-field gravity with essential speed and accuracy.

[1]  T. Tweed Space , 2011, STEM Education in the Primary School.

[2]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[3]  Di Li,et al.  Preface: Planning the scientific applications of the Five-hundred-meter Aperture Spherical radio Telescope , 2019, Research in Astronomy and Astrophysics.

[4]  L. Shao,et al.  Degeneracy in studying the supranuclear equation of state and modified gravity with neutron stars , 2019, XIAMEN-CUSTIPEN WORKSHOP ON THE EQUATION OF STATE OF DENSE NEUTRON-RICH MATTER IN THE ERA OF GRAVITATIONAL WAVE ASTRONOMY.

[5]  N. Yunes,et al.  Scalar charges and scaling relations in massless scalar–tensor theories , 2019, Classical and Quantum Gravity.

[6]  Brianna Thompson,et al.  157 , 2019, Critical Care Medicine.

[7]  J. K. Blackburn,et al.  Tests of General Relativity with GW170817. , 2018, Physical review letters.

[8]  C. Vidal,et al.  STAT , 2019, Springer Reference Medizin.

[9]  Kagra collaboration KAGRA: 2.5 generation interferometric gravitational wave detector , 2019 .

[10]  Duncan A. Brown,et al.  Erratum: Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817 [Phys. Rev. Lett. 121, 091102 (2018)]. , 2018, Physical review letters.

[11]  Anonymous,et al.  Erratum: Tests of General Relativity with GW150914 [Phys. Rev. Lett. 116, 221101 (2016)]. , 2018, Physical review letters.

[12]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[13]  Harbir Antil,et al.  A Note on QR-Based Model Reduction: Algorithm, Software, and Gravitational Wave Applications , 2018, Computing in Science & Engineering.

[14]  Duncan A. Brown,et al.  Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. , 2018, Physical review letters.

[15]  K. Chatziioannou,et al.  Measuring the neutron star tidal deformability with equation-of-state-independent relations and gravitational waves , 2018, 1804.03221.

[16]  K. Lee,et al.  A dynamical approach in exploring the unknown mass in the Solar system using pulsar timing arrays , 2018, 1802.05452.

[17]  Stephen R. Taylor,et al.  The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.

[18]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[19]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[20]  N. Sennett,et al.  Effective action model of dynamically scalarizing binary neutron stars , 2017, 1708.08285.

[21]  G. Desvignes,et al.  A Massive-born Neutron Star with a Massive White Dwarf Companion , 2017, 1706.08060.

[22]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[23]  A. Buonanno,et al.  Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors , 2017, 1704.07561.

[24]  Michael Boyle,et al.  Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors , 2016, 1611.03703.

[25]  P. McMillan,et al.  The mass distribution and gravitational potential of the Milky Way , 2016, 1608.00971.

[26]  B. Machenschalk,et al.  EINSTEIN@HOME DISCOVERY OF A DOUBLE NEUTRON STAR BINARY IN THE PALFA SURVEY , 2016, 1608.08211.

[27]  N. Yunes,et al.  Approximate Universal Relations for Neutron Stars and Quark Stars , 2016, 1608.02582.

[28]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[29]  N. Yunes,et al.  Effect of cosmological evolution on Solar System constraints and on the scalarization of neutron stars in massless scalar-tensor theories , 2016, 1607.08888.

[30]  W. D. Pozzo,et al.  On tests of general relativity with binary radio pulsars , 2016, 1606.02852.

[31]  N. Wex,et al.  Tests of gravitational symmetries with radio pulsars , 2016, 1604.03662.

[32]  Michael Pürrer,et al.  Frequency domain reduced order model of aligned-spin effective-one-body waveforms with generic mass-ratios and spins , 2016 .

[33]  N. Yunes,et al.  Theory-Agnostic Constraints on Black-Hole Dipole Radiation with Multiband Gravitational-Wave Astrophysics. , 2016, Physical review letters.

[34]  Modeling dynamical scalarization with a resummed post-Newtonian expansion , 2016, 1603.03300.

[35]  R. Karuppusamy,et al.  High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.

[36]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[37]  F. Pretorius,et al.  Spontaneous Scalarization with Massive Fields , 2016, 1601.07475.

[38]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[39]  M. Bailes,et al.  Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array , 2015, 1510.04434.

[40]  Jeff Wagg,et al.  Advancing Astrophysics with the Square Kilometre Array , 2015 .

[41]  Marco O. P. Sampaio,et al.  Testing general relativity with present and future astrophysical observations , 2015, 1501.07274.

[42]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[43]  Di Li,et al.  The five-hundred-meter aperture spherical radio telescope (FAST) project , 2011, 2015 International Topical Meeting on Microwave Photonics (MWP).

[44]  Lourdes Verdes-Montenegro,et al.  Advancing Astrophysics with the Square Kilometre Array , 2015 .

[45]  The Ligo Scientific Collaboration Advanced LIGO , 2014, 1411.4547.

[46]  Michael Pürrer,et al.  Frequency-domain reduced order models for gravitational waves from aligned-spin compact binaries , 2014 .

[47]  A. Buonanno,et al.  Coalescence of binary neutron stars in a scalar-tensor theory of gravity , 2013, 1310.0627.

[48]  C. Will The Confrontation between General Relativity and Experiment , 1980, Living reviews in relativity.

[49]  Jan S. Hesthaven,et al.  Fast prediction and evaluation of gravitational waveforms using surrogate models , 2013, ArXiv.

[50]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[51]  C. Palenzuela,et al.  Neutron-star mergers in scalar-tensor theories of gravity , 2012, 1212.5053.

[52]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[53]  J. Lattimer The Nuclear Equation of State and Neutron Star Masses , 2012, 1305.3510.

[54]  P. Freire,et al.  The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The most stringent test of scalar-tensor gravity , 2012, 1205.1450.

[55]  H. Goenner Some remarks on the genesis of scalar-tensor theories , 2012, 1204.3455.

[56]  C. Will,et al.  Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity , 2011, 1112.4903.

[57]  W. Marsden I and J , 2012 .

[58]  Chad R. Galley,et al.  Reduced basis representations of multi-mode black hole ringdown gravitational waves , 2011, 1109.5642.

[59]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[60]  Jan S Hesthaven,et al.  Reduced basis catalogs for gravitational wave templates. , 2011, Physical review letters.

[61]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[62]  Gabriela Gonzalez,et al.  The LIGO Scientific Collaboration , 2015 .

[63]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[64]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[65]  G. Desvignes,et al.  Generic tests of the existence of the gravitational dipole radiation and the variation of the gravitational constant , 2009, 0908.0285.

[66]  M. Colpi,et al.  Physics of relativistic objects in compact binaries: from birth to coalescence , 2009 .

[67]  N. Nguyen,et al.  A general multipurpose interpolation procedure: the magic points , 2008 .

[68]  K. Kuroda,et al.  The status of LCGT , 2006 .

[69]  Julien Langou,et al.  Rounding error analysis of the classical Gram-Schmidt orthogonalization process , 2005, Numerische Mathematik.

[70]  Walter Hoffmann,et al.  Iterative algorithms for Gram-Schmidt orthogonalization , 1989, Computing.

[71]  C. Martins,et al.  Phi in the sky : The quest for cosmological scalar fields, Porto, Portugl 8-10 July 2004 , 2004 .

[72]  G. Esposito-Farèse Tests of Scalar‐Tensor Gravity , 2004, gr-qc/0409081.

[73]  J. Cordes,et al.  Strong-field tests of gravity using pulsars and black holes , 2004 .

[74]  Y. Fujii,et al.  The Scalar–Tensor Theory of Gravitation: Cosmology with Λ , 2003 .

[75]  P. Tortora,et al.  A test of general relativity using radio links with the Cassini spacecraft , 2003, Nature.

[76]  I. Stairs Testing General Relativity with Pulsar Timing , 2003, Living reviews in relativity.

[77]  T. Damour,et al.  Tensor-scalar gravity and binary-pulsar experiments. , 1996, Physical review. D, Particles and fields.

[78]  C. Will,et al.  Testing scalar-tensor gravity with gravitational-wave observations of inspiralling compact binaries. , 1994, Physical review. D, Particles and fields.

[79]  T. Damour,et al.  Nonperturbative strong-field effects in tensor-scalar theories of gravitation. , 1993, Physical review letters.

[80]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[81]  Finn,et al.  Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.

[82]  T. Damour,et al.  Strong-field tests of relativistic gravity and binary pulsars. , 1991, Physical review. D, Particles and fields.

[83]  T. Damour,et al.  Tensor-multi-scalar theories of gravitation , 1991 .

[84]  T. Damour,et al.  On the orbital period change of the binary pulsar PSR 1913+16 , 1991 .

[85]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics , 1982 .

[86]  D. Eardley Gravitational collapse of marginally bound spheroids: Initial conditions , 1975 .

[87]  G. W. Horndeski Second-order scalar-tensor field equations in a four-dimensional space , 1974 .

[88]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[89]  R. Dicke Mach's Principle and Invariance under Transformation of Units , 1962 .

[90]  R. Dicke,et al.  Mach's principle and a relativistic theory of gravitation , 1961 .

[91]  P. Jordan Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen , 1959 .

[92]  M. Fierz On the physical interpretation of P.Jordan's extended theory of gravitation , 1956 .

[93]  P. Jordan Formation of the Stars and Development of the Universe , 1949, Nature.

[94]  R. Adams Proceedings , 1947 .

[95]  J. Oppenheimer,et al.  On Massive neutron cores , 1939 .

[96]  R. Tolman Static Solutions of Einstein's Field Equations for Spheres of Fluid , 1939 .