RCM Polarimetric SAR for Enhanced Ship Detection and Classification

Abstract. The RADARSAT Constellation Mission (RCM), which involves three small synthetic aperture radar (SAR) satellites flying in a constellation configuration, will be equipped with fully polarimetric (FP) capabilities in addition to single-polarization (HH, HV, VV), conventional (HH-HV, VV-VH, and HH-VV), and hybrid (i.e., compact) dual polarization. In this article, the added value of polarimetric SAR information for enhanced ship detection is demonstrated using polarimetric RADARSAT-2 (RS2) data collected over vessels (validated with Automatic Identification System (AIS) data) in the Strait of Georgia, near Vancouver, Canada. It is shown that the excursion (Δp) of the degree of polarization (DoP) provides a significant increase in ship–sea contrast in comparison with conventional (i.e., scalar) single-channel polarizations (HH, HV, VV) and compact. Δp, which is a measure of the variation of the DoP with transmit antenna polarization, performs better than compact intensities and degree of depolarization (DoD) promoted recently for ship detection. The unique potential of FP for ship classification is also demonstrated using polarimetric Convair-580 SAR data collected off Cape Race, Newfoundland, Canada. An efficient combination of successive wide-swath ScanSAR and FP, which exploits the RCM rapid-revisit capability at high latitudes, is considered for operational ship detection and classification. Résumé. La mission de la Constellation RADARSAT (MCR), qui est constituée de trois petits satellites SAR évoluant en configuration de constellation, sera équipée avec des capacités de polarisation en quadrature (FP) en plus de la polarisation simple (HH, HV, VV), de la polarisation classique (HH-HV, VV-VH, et HH-VV) et de la bipolarisation hybride (c.-à-d., compacte). Dans cet article, la valeur ajoutée des informations polarimétriques SAR pour améliorer la détection de navires est démontrée en utilisant des données polarimétriques RADARSAT-2 (RS2) recueillies sur des navires (validées avec le système d'identification automatique (AIS) de données) dans le détroit de Georgia, près de Vancouver (Canada). Il apparait que la différence (delta p) du degré de polarisation (DOP) fournit une augmentation significative du contraste entre le navire et l'eau par rapport à des polarisations simples classiques (p.ex., scalaire) (HH, HV, VV) et compactes. Le delta p, qui est une mesure de la variation de la polarisation DoP avec l'antenne d'émission, est plus performant que les intensités compactes et le degré de dépolarisation (DoD) promus récemment pour la détection de navires. Le potentiel unique de la FP pour la classification de navires est également démontré en utilisant les données polarimétriques Convair-580 SAR recueillies au large du cap Race à Terre-Neuve (Canada). Une combinaison efficace de la large fauchée ScanSAR consécutive à la FP, qui exploite la capacité de revisite rapide de la MCR dans les hautes latitudes, est considérée pour la détection et la classification opérationnelles de navires.

[1]  Thuy Le Toan,et al.  Polarimetric discriminators for SAR images , 1992, IEEE Trans. Geosci. Remote. Sens..

[2]  R. Keith Raney,et al.  Synthetic Aperture Imaging Radar and Moving Targets , 1971, IEEE Transactions on Aerospace and Electronic Systems.

[3]  M. W. Long Polarisation and sea echo , 1967 .

[4]  Carlos López-Martínez,et al.  Phenomenological Vessel Scattering Study Based on Simulated Inverse SAR Imagery , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Heather McNairn,et al.  Compact polarimetry overview and applications assessment , 2010 .

[6]  Paris W. Vachon,et al.  Operational ship detection in Canada using RADARSAT , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[7]  P. Vachon,et al.  Ship Detection by the RADARSAT SAR: Validation of Detection Model Predictions , 1997 .

[8]  Michael J. Collins,et al.  On the Reconstruction of Quad-Pol SAR Data From Compact Polarimetry Data For Ocean Target Detection , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[9]  M. Yeremy,et al.  Ocean Surveillance with Polarimetric SAR , 2001 .

[10]  Ridha Touzi,et al.  Characterization of target symmetric scattering using polarimetric SARs , 2002, IEEE Trans. Geosci. Remote. Sens..

[11]  Irena Hajnsek,et al.  Validating a Notch Filter for Detection of Targets at Sea With ALOS-PALSAR Data: Tokyo Bay , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[12]  Yoshio Yamaguchi,et al.  GOPCE-Based Approach to Ship Detection , 2012, IEEE Geoscience and Remote Sensing Letters.

[13]  Jean-Claude Souyris,et al.  Compact polarimetry based on symmetry properties of geophysical media: the /spl pi//4 mode , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[14]  J. R. Huynen,et al.  Measurement of the target scattering matrix , 1965 .

[15]  Jian Yang,et al.  Ship detection by using the M-Chi and M-Delta decompositions , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[16]  P. Vachon,et al.  Validation of RADARSAT-1 vessel signatures with AISLive data , 2007 .

[17]  J. S. Lee,et al.  A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction , 2004 .

[18]  Paris W. Vachon,et al.  Validation of Ship Signatures in Envisat ASAR AP Mode Data using AISLive: Data Acquisition, Processing, and Analysis Results , 2008 .

[19]  Thomas L. Ainsworth,et al.  Comparison of Compact Polarimetric Synthetic Aperture Radar Modes , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[20]  William Perrie,et al.  Target Detection on the Ocean With the Relative Phase of Compact Polarimetry SAR , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Optimal polarizations for partially polarized backscatter , 1985 .

[22]  William L. Cameron,et al.  Simulated polarimetric signatures of primitive geometrical shapes , 1996, IEEE Trans. Geosci. Remote. Sens..

[23]  Kazuo Ouchi,et al.  On a Novel Approach Using MLCC and CFAR for the Improvement of Ship Detection by Synthetic Aperture Radar , 2010, IEEE Geoscience and Remote Sensing Letters.

[24]  R. Raney,et al.  A simulation for spaceborne SAR imagery of a distributed, moving scene , 1989 .

[25]  R. Keith Raney,et al.  On the use of permanent symmetric scatterers for ship characterization , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[26]  P. Vachon,et al.  Improved ship detection with airborne polarimetric SAR data , 2005 .

[27]  K Murnaghan,et al.  Ship Detection Using Airborne Polarimetric SAR , 2001 .

[28]  Paris W. Vachon,et al.  Improved ship detection using polarimetric SAR data , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[29]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[30]  R. Keith Raney,et al.  Hybrid-Polarity SAR Architecture , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[31]  Alan A. Thompson,et al.  Innovative Capabilities of the RADARSAT Constellation Mission , 2010 .

[32]  Armando Marino,et al.  A Notch Filter for Ship Detection With Polarimetric SAR Data , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[33]  R. K. Hawkins,et al.  Ship detection and characterization using polarimetric SAR , 2004 .

[34]  R. Touzi Hybrid Versus Matched Antenna for Dual- and Fully Polarimetric SAR , 2013 .

[35]  Guy Séguin,et al.  RADARSAT constellation, project objectives and status , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[36]  Paris W. Vachon,et al.  C-Band Cross-Polarization Wind Speed Retrieval , 2011, IEEE Geoscience and Remote Sensing Letters.

[37]  R. Touzi On the use of polarimetric SAR data for ship detection , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[38]  Paris W. Vachon,et al.  Requirement on Antenna Cross-Polarization Isolation for the Operational Use of C-Band SAR Constellations in Maritime Surveillance , 2010, IEEE Geoscience and Remote Sensing Letters.

[39]  Paris W. Vachon,et al.  Optimization of the Degree of Polarization for Enhanced Ship Detection Using Polarimetric RADARSAT-2 , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[40]  R. K. Hawkins,et al.  The CCRS Airborne SAR Systems: Radar for Remote Sensing Research , 1995 .

[41]  Paris W. Vachon,et al.  Ship signatures in synthetic aperture radar imagery , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[42]  Armando Marino,et al.  Ship detection with RadarSat-2 Quad-Pol sar data using a notch filter based on perturbation analysis , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[43]  Jean-Yves Tourneret,et al.  Ship and Oil-Spill Detection Using the Degree of Polarization in Linear and Hybrid/Compact Dual-Pol SAR , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.