Recent Trends in Surface Characterization and Chemistry with High‐Resolution Scanning Force Methods

The current status and future prospects of non-contact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM) for studying insulating surfaces and thin insulating films in high resolution are discussed. The rapid development of these techniques and their use in combination with other scanning probe microscopy methods over the last few years has made them increasingly relevant for studying, controlling, and functionalizing the surfaces of many key materials. After introducing the instruments and the basic terminology associated with them, state-of-the-art experimental and theoretical studies of insulating surfaces and thin films are discussed, with specific focus on defects, atomic and molecular adsorbates, doping, and metallic nanoclusters. The latest achievements in atomic site-specific force spectroscopy and the identification of defects by crystal doping, work function, and surface charge imaging are reviewed and recent progress being made in high-resolution imaging in air and liquids is detailed. Finally, some of the key challenges for the future development of the considered fields are identified.

[1]  M. Lux‐Steiner,et al.  Correct height measurement in noncontact atomic force microscopy. , 2003, Physical review letters.

[2]  Gerd Binnig,et al.  Atomic Resolution with Atomic Force Microscope , 1987 .

[3]  Hannu Häkkinen,et al.  Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO , 2005, Science.

[4]  T. Risse,et al.  Crossover from three-dimensional to two-dimensional geometries of Au nanostructures on thin MgO(001) films: a confirmation of theoretical predictions. , 2007, Physical review letters.

[5]  R. Wiesendanger,et al.  The monomer-to-dimer transition and bimodal growth of Co–salen on NaCl(001): a high resolution atomic force microscopy study , 2009, Nanotechnology.

[6]  F. Besenbacher,et al.  Noncontact atomic force microscopy studies of vacancies and hydroxyls of TiO2(110) : Experiments and atomistic simulations , 2007 .

[7]  J. Wollschläger,et al.  Interface-reaction-mediated formation of two-dimensional Si islands on CaF2 , 2003 .

[8]  Bielefeldt,et al.  Subatomic Features on the Silicon (111)-(7x7) Surface Observed by Atomic Force Microscopy. , 2000, Science.

[9]  U. Landman,et al.  Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition. , 2009, Journal of the American Chemical Society.

[10]  D. Dietzel,et al.  Damping and instability in non-contact atomic force microscopy: the contribution of the instrument , 2005 .

[11]  J. Zoval,et al.  Electrochemical Deposition of Silver Nanocrystallites on the Atomically Smooth Graphite Basal Plane , 1996 .

[12]  D. Abraham,et al.  High resolution atomic force microscopy potentiometry , 1991 .

[13]  J. Chevrier,et al.  Kinetic roughening of charge spreading in a two-dimensional silicon nanocrystal network detected by electrostatic force microscopy , 2005 .

[14]  Surface structure of Au/InSb(001) system investigated with scanning force microscopy , 2004 .

[15]  G. Seifert,et al.  Adsorption of PTCDA on a partially KBr covered Ag(111) substrate , 2006, Nanotechnology.

[16]  Saw-Wai Hla,et al.  STM control of chemical reaction: single-molecule synthesis. , 2003, Annual review of physical chemistry.

[17]  Takeshi Fukuma,et al.  Phase modulation atomic force microscope with true atomic resolution , 2006 .

[18]  Y. Sugawara,et al.  Atomic-scale structures on a non-stoichiometric TiO2(110) surface studied by noncontact AFM , 2000 .

[19]  F. Besenbacher,et al.  Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy , 2006, Nanotechnology.

[20]  C. Pisani,et al.  The oxygen vacancy at the surface and in bulk MgO: An embedded-cluster study , 1997 .

[21]  C. Henry,et al.  Surface preparation of hard ionic crystals by ultrahigh vacuum cleavage , 2005 .

[22]  F. Krok,et al.  Leaky atomic traps: Upward diffusion of Au from nanoscale pits on ionic-crystal surfaces , 2007 .

[23]  D. Blom,et al.  Self-assembled FePt nanodot arrays with mono-dispersion and -orientation , 2005 .

[24]  L. B. Harris Direct determination of the surface potential on sodium chloride single crystals. II. Separate anion and cation defect parameters , 1987 .

[25]  P. Girard,et al.  Observation of voltage contrast in non contact resonant mode atomic force microscopy , 1996 .

[26]  Kei Kobayashi,et al.  True atomic resolution in liquid by frequency-modulation atomic force microscopy , 2005 .

[27]  P. Jelínek,et al.  Single atomic contact adhesion and dissipation in dynamic force microscopy. , 2006, Physical review letters.

[28]  H. Güntherodt,et al.  Quantitative Measurement of Short-Range Chemical Bonding Forces , 2001, Science.

[29]  P. Grutter,et al.  Nanoscale pits as templates for building a molecular device. , 2007, Small.

[30]  W. Hofer,et al.  Scanning Probe Microscopy: Atomic Scale Engineering by Forces and Currents , 2006 .

[31]  M. Reichling,et al.  Strong adhesion of water to CeO2(111) , 2007 .

[32]  Paul K. Hansma,et al.  Tapping mode atomic force microscopy in liquids , 1994 .

[33]  Shin-ichi Kitamura,et al.  High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope , 1998 .

[34]  D. Bonnell,et al.  Scanning probe microscopy of oxide surfaces: atomic structure and properties , 2008 .

[35]  L. Zepeda-Ruiz,et al.  Rethinking Classical Crystal Growth Models through Molecular Scale Insights: Consequences of Kink-Limited Kinetics , 2009 .

[36]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[37]  U. Landman,et al.  Ultrathin magnesia films as support for molecules and metal clusters: Tuning reactivity by thickness and composition , 2010 .

[38]  D. Deresmes,et al.  Kelvin force microscopy at the second cantilever resonance: an out-of-vacuum crosstalk compensation setup. , 2008, Ultramicroscopy.

[39]  T. Glatzel,et al.  On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy , 2009, Nanotechnology.

[40]  H. Butt,et al.  Electrical modes in scanning probe microscopy. , 2009, Macromolecular rapid communications.

[41]  F. Seitz Color Centers in Alkali Halide Crystals. II , 1954 .

[42]  T. Risse,et al.  Identification of color centers on MgO(001) thin films with scanning tunneling microscopy. , 2006, The journal of physical chemistry. B.

[43]  T. Yanagida,et al.  Non-Contact Electrostatic Surface Force Imaging of Single Protein Filaments using Intermolecular Force Microscopy , 2001 .

[44]  C. Demaille,et al.  Electrochemical atomic-force microscopy using a tip-attached redox mediator. Proof-of-concept and perspectives for functional probing of nanosystems. , 2009, ACS nano.

[45]  Yossi Rosenwaks,et al.  Kelvin probe force microscopy of semiconductor surface defects , 2004 .

[46]  J. Israelachvili Intermolecular and surface forces , 1985 .

[47]  Kantorovich,et al.  Structure and spectroscopy of surface defects from scanning force microscopy: theoretical predictions , 2000, Physical review letters.

[48]  R. Bennewitz,et al.  Atomic structure and friction of ultrathin films of KBr on Cu(100) , 2008 .

[49]  J. E. Stern,et al.  Contact electrification using force microscopy. , 1989, Physical review letters.

[50]  Yang Gan,et al.  Atomic and subnanometer resolution in ambient conditions by atomic force microscopy , 2009 .

[51]  M. S. Chen,et al.  Ultrathin, ordered oxide films on metal surfaces , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  H. Hölscher,et al.  Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy , 2002 .

[53]  Kazuo Suzuki X-ray Studies on Precipitation of Metastable Centers in Mixed Crystals NaCl-CdCl 2 , 1961 .

[54]  R. French,et al.  Simulated measurement of small metal clusters by frequency-modulation non-contact atomic force microscopy , 2006 .

[55]  E. Meyer,et al.  Molecular assemblies grown between metallic contacts on insulating surfaces , 2009 .

[56]  Gerhard Ertl,et al.  Kinetic Oscillations in the Platinum-Catalyzed Oxidation of Co , 1982 .

[57]  J. Blakely,et al.  Origin of equilibrium space charge potentials in ionic crystals , 1969 .

[58]  C. Henry,et al.  Surface double layer on (001) surfaces of alkali halide crystals: a scanning force microscopy study. , 2007, Physical review letters.

[59]  S. Morita,et al.  Simultaneous measurement of force and tunneling current at room temperature , 2009 .

[60]  M. Fujihira,et al.  Atomic contrast on a point defect on CaF2(111) imaged by non-contact atomic force microscopy , 2007 .

[61]  Franz J. Giessibl,et al.  HIGH-SPEED FORCE SENSOR FOR FORCE MICROSCOPY AND PROFILOMETRY UTILIZING A QUARTZ TUNING FORK , 1998 .

[62]  E. Meyer,et al.  Aspects of dynamic force microscopy on NaCl/Cu(111): resolution, tip–sample interactions and cantilever oscillation characteristics , 1999 .

[63]  Peter Liljeroth,et al.  Measuring the Charge State of an Adatom with Noncontact Atomic Force Microscopy , 2009, Science.

[64]  F. Träger,et al.  In situ determination of the shape of supported silver clusters during growth , 1999 .

[65]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[66]  M Schmid,et al.  Nanotemplate with holes: ultrathin alumina on Ni3Al(111). , 2007, Physical review letters.

[67]  A. Foster,et al.  Imaging the real shape of nanoclusters in scanning force microscopy , 2008 .

[68]  Charge flow during metal-insulator contact. , 1992, Physical review. B, Condensed matter.

[69]  Uwe Hartmann,et al.  Noncontact Atomic Force Microscopy Investigations of Au 55 Thin Films Deposited on Gold and Graphite Substrates , 2007 .

[70]  K. Fukui,et al.  Atom-Resolved Image of the TiO 2 \(110\) Surface by Noncontact Atomic Force Microscopy , 1997 .

[71]  Masayuki Abe,et al.  Atom inlays performed at room temperature using atomic force microscopy , 2005, Nature materials.

[72]  L. B. Harris,et al.  Direct determination of surface potential on sodium chloride single crystals. I. Analysis of measurements , 1985 .

[73]  F. Krok,et al.  Dynamic force microscopy and Kelvin probe force microscopy of KBr film on InSb(0 0 1) surface at submonolayer coverage , 2004 .

[74]  K. Wandelt,et al.  Disorder or complexity? Understanding a nanoscale template structure on alumina. , 2007, Journal of the American Chemical Society.

[75]  A. De Vita,et al.  Insulator at the ultrathin limit: MgO on Ag(001). , 2001, Physical review letters.

[76]  A. Shluger,et al.  Unambiguous interpretation of atomically resolved force microscopy images of an insulator. , 2001, Physical review letters.

[77]  R. Wiesendanger Scanning Probe Microscopy and Spectroscopy: Contents , 1994 .

[78]  K. Fukui,et al.  Dynamic aspects and associated structures of TiO2(110) and CeO2(111) surfaces relevant to oxide catalyses , 2004 .

[79]  Fredrik E. Olsson,et al.  Imaging Bond Formation Between a Gold Atom and Pentacene on an Insulating Surface , 2006, Science.

[80]  A. Kühnle,et al.  Evidence for Vacancy Creation by Chromium Doping of Rutile Titanium Dioxide (110) , 2009 .

[81]  Toyoaki Eguchi,et al.  High resolution atomic force microscopic imaging of the Si(111)-(7 x 7) surface: contribution of short-range force to the images. , 2002, Physical review letters.

[82]  D. J. Kim,et al.  Single-electron tunneling to insulator surfaces measured by frequency detection electrostatic force microscopy , 2004 .

[83]  M. Horton,et al.  Breaking the speed limit with atomic force microscopy , 2007 .

[84]  Investigating atomic details of the CaF2(111) surface with a qPlus sensor , 2004, cond-mat/0412430.

[85]  A. Halm,et al.  Nanomechanical Control of an Optical Antenna , 2008, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[86]  F. Giessibl,et al.  Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy , 1995, Science.

[87]  Seizo Morita,et al.  Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. , 2003, Physical review letters.

[88]  A. Stoneham,et al.  Defects and defect processes in nonmetallic solids , 1985 .

[89]  C. Henry,et al.  High-resolution imaging of gold clusters on KBr(001) surfaces investigated by dynamic scanning force microscopy , 2004 .

[90]  Joël Chevrier,et al.  Imaging of stored charges in Si quantum dots by tapping and electrostatic force microscopy , 2002 .

[91]  Adam S. Foster,et al.  Theories of scanning probe microscopes at the atomic scale , 2003 .

[92]  C. Gerber,et al.  Dynamic SFM with true atomic resolution on alkali halide surfaces , 1998 .

[93]  F. Besenbacher,et al.  Atomic-Scale Structure and Stability of the 31 × 31 R 9 ° Surface of Al 2 O 3 ( 0001 ) , 2009 .

[94]  M. Fujihira,et al.  Differentiation of molecules in a mixed self-assembled monolayer of H-and Cl-terminated bicyclo[2.2.2]octane derivatives , 2006, Nanotechnology.

[95]  A. Shluger,et al.  Reactivity of (H+)(e−) color centers at the MgO surface: formation of O2− and N2− radical anions , 2003 .

[96]  F. Besenbacher,et al.  The role of tip size and orientation, tip–surface relaxations and surface impurities in simultaneous AFM and STM studies on the TiO2(110) surface , 2009, Nanotechnology.

[97]  M. Salmeron,et al.  In situ study of water-induced segregation of bromide in bromide-doped sodium chloride by scanning polarization force microscopy. , 2005, The journal of physical chemistry. A.

[98]  H. Güntherodt,et al.  Short-range electrostatic interactions in atomic-resolution scanning force microscopy on the Si ( 111 ) 7 × 7 surface , 2003 .

[99]  J. Baldeschwieler,et al.  Atomic-scale imaging of DNA using scanning tunnelling microscopy , 1990, Nature.

[100]  A. Shluger,et al.  Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF2(111) as a reference surface , 2002 .

[101]  A. Rohl,et al.  Model of noncontact scanning force microscopy on ionic surfaces , 1999 .

[102]  T. C. McGill,et al.  Measurement of induced surface charges, contact potentials, and surface states in GaN by electric force microscopy , 1999 .

[103]  R. Wiesendanger,et al.  A scanning force microscope with atomic resolution in ultrahigh vacuum and at low temperatures , 1998 .

[104]  Marcella Giovannini,et al.  Self-organized growth of nanostructure arrays on strain-relief patterns , 1998, Nature.

[105]  S. Torbruegge,et al.  Evidence of subsurface oxygen vacancy ordering on reduced CeO2(111). , 2007, Physical review letters.

[106]  M. Lux‐Steiner,et al.  Kelvin probe force microscopy on III–V semiconductors: the effect of surface defects on the local work function , 2003 .

[107]  O. Marti,et al.  Palladium clusters on mica: A study by scanning force microscopy , 1991 .

[108]  W. Hofer,et al.  Detailed scanning probe microscopy tip models determined from simultaneous atom-resolved AFM and STM studies of the TiO2(110) surface , 2008 .

[109]  S. Jarvis,et al.  Local Solvation Shell Measurement in Water Using a Carbon Nanotube Probe , 2000 .

[110]  Baetzold Rc Computation of the energetics of surface vacancy and interstitial generation in silver halide. , 1995 .

[111]  Henning Sirringhaus,et al.  Local charge trapping in conjugated polymers resolved by scanning Kelvin probe microscopy. , 2009, Physical review letters.

[112]  C. J. Chen,et al.  Introduction to Scanning Tunneling Microscopy , 1993 .

[113]  K. Venkataramani,et al.  Morphology, Dispersion, and Stability of Cu Nanoclusters on Clean and Hydroxylated #-Al , 2008 .

[114]  B. Hammer,et al.  Imaging of the hydrogen subsurface site in rutile TiO2. , 2009, Physical review letters.

[115]  S. Kawai,et al.  Determination of effective tip geometries in Kelvin probe force microscopy on thin insulating films on metals , 2009, Nanotechnology.

[116]  P K Hansma,et al.  Immobilized proteins in buffer imaged at molecular resolution by atomic force microscopy. , 1990, Biophysical journal.

[117]  Jan Greve,et al.  Tapping mode atomic force microscopy in liquid , 1994 .

[118]  K. Fukui,et al.  Imaging of individual formate ions adsorbed on TiO2(110) surface by non-contact atomic force microscopy , 1997 .

[119]  H. Güntherodt,et al.  A low temperature ultrahigh vaccum scanning force microscope , 1999 .

[120]  H. Boyen,et al.  On the morphology and stability of Au nanoparticles on TiO2(110) prepared from micelle-stabilized precursors. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[121]  L. B. Harris,et al.  Vibrating capacitor measurement of surface charge , 1984 .

[122]  A. Shluger,et al.  Controlled manipulation of atoms in insulating surfaces with the virtual atomic force microscope. , 2007, Physical review letters.

[123]  S. Torbruegge,et al.  Stabilization of Zinc-Terminated ZnO(0001) by a Modified Surface Stoichiometry , 2009 .

[124]  D. Deresmes,et al.  Electric force microscopy of individually charged semiconductor nanoparticles , 2006 .

[125]  N. Félidj,et al.  Charge stability on thin insulators studied by atomic force microscopy , 2000 .

[126]  Javier Tamayo,et al.  Interpretation of phase contrast in tapping mode AFM and shear force microscopy: a study of Nafion , 2001 .

[127]  Daniel J. Müller,et al.  Observing single biomolecules at work with the atomic force microscope , 2000, Nature Structural Biology.

[128]  E. Meyer,et al.  Lateral-force measurements in dynamic force microscopy , 2002 .

[129]  G Büldt,et al.  Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. , 1995, Biophysical journal.

[130]  E. Meyer,et al.  Scanning Probe Microscopy , 2021, Graduate Texts in Physics.

[131]  J. Newkirk,et al.  Precipitation in LiF crystals doped with MgF2 , 1967 .

[132]  H. Güntherodt,et al.  Atomic resolution imaging and frequency versus distance measurements on NiO(001) using low-temperature scanning force microscopy , 2003 .

[133]  E. Cartier,et al.  Imaging of trapped charge in SiO2 and at the SiO2–Si interface , 2001 .

[134]  R. Oliver Advances in AFM for the electrical characterization of semiconductors , 2008 .

[135]  Lukas M. Eng,et al.  Accuracy and resolution limits of Kelvin probe force microscopy , 2005 .

[136]  M. Reichling,et al.  Atomic Resolution Imaging on CeO2(111) with Hydroxylated Probes , 2008 .

[137]  F. Giessibl Atomic Force Microscopy in Ultrahigh Vacuum , 1994 .

[138]  R. Nieminen,et al.  High-resolution scanning force microscopy of gold nanoclusters on the KBr (001) surface , 2006 .

[139]  Matthew Watkins,et al.  Manipulation of defects on oxide surfaces via barrier reduction induced by atomic force microscope tips , 2006 .

[140]  D. Ijdo,et al.  The crystal structure of Na6MnCl8 and Na2Mn3Cl8 and some isostructural compounds , 1975 .

[141]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[142]  Lantz,et al.  Low temperature scanning force microscopy of the Si(111)-(7x7) surface , 2000, Physical review letters.

[143]  Sascha Sadewasser,et al.  Amplitude or frequency modulation-detection in Kelvin probe force microscopy , 2003 .

[144]  S. Akita,et al.  Quantitative Force Measurements In Liquid Using Frequency Modulation Atomic Force Microscopy , 2004 .

[145]  L. Eng,et al.  Ordered growth and local workfunction measurements of tris(8-hydroxyquinoline) aluminium on ultrathin KBr films. , 2006, Nanotechnology.

[146]  N. Nilius Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy , 2009 .

[147]  L. Giordano,et al.  Control of the charge state of metal atoms on thin MgO films. , 2007, Physical review letters.

[148]  Ansgar Philippsen,et al.  Imaging the electrostatic potential of transmembrane channels: atomic probe microscopy of OmpF porin. , 2002, Biophysical journal.

[149]  Javier Tamayo,et al.  Piconewton regime dynamic force microscopy in liquid , 2000 .

[150]  E. Altman,et al.  Three-dimensional imaging of short-range chemical forces with picometre resolution. , 2009, Nature nanotechnology.

[151]  Peter Liljeroth,et al.  Current-Induced Hydrogen Tautomerization and Conductance Switching of Naphthalocyanine Molecules , 2007, Science.

[152]  M. V. Ganduglia-Pirovano,et al.  Imaging of individual adatoms on oxide surfaces by dynamic force microscopy , 2010 .

[153]  E. Altman,et al.  Mechanisms, Kinetics, and Dynamics of Oxidation and Reactions on Oxide Surfaces Investigated by Scanning Probe Microscopy , 2010, Advanced materials.

[154]  C. Quate,et al.  Imaging of organic molecular films with the atomic force microscope , 1992 .

[155]  Q. Yu,et al.  Growth and sintering of Pd clusters on α-Al2O3(0001) , 2005 .

[156]  T. Ohta,et al.  Atomically resolved imaging of a CaF bilayer on Si(111): Subsurface atoms and the image contrast in scanning force microscopy , 2004 .

[157]  A. Kühnle,et al.  Repulsive interaction and contrast inversion in noncontact atomic force microscopy imaging of adsorbates , 2008 .

[158]  M. Rohlfing,et al.  Imaging perylene derivatives on rutile TiO 2 ( 110 ) by noncontact atomic force microscopy , 2009 .

[159]  S. Okada,et al.  Imaging of polydiacetylenes by atomic force microscopy , 1993 .

[160]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[161]  G. Thornton,et al.  Growth of copper and palladium on α-Al2O3(0001) , 2000 .

[162]  A. Kühnle,et al.  Clear signature of the (2 x 1) reconstruction of calcite (1014). , 2010, Langmuir.

[163]  A. Baldereschi,et al.  Local work function Moiré pattern on ultrathin ionic films: NaCl on Ag(100) , 2005 .

[164]  J. Koehler,et al.  Space Charge in Ionic Crystals. I. General Approach with Application to NaCl , 1965 .

[165]  H. Freund,et al.  Atomic structure of antiphase domain boundaries of a thin Al2O3 film on NiAl(110). , 2003, Physical review letters.

[166]  Contrast formation in atomic resolution scanning force microscopy on CaF2(111): experiment and theory , 2001 .

[167]  Rubén Pérez,et al.  ‘All-inclusive’ imaging of the rutile TiO2(110) surface using NC-AFM , 2009, Nanotechnology.

[168]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[169]  Klaus D. Jandt,et al.  Atomic force microscopy of biomaterials surfaces and interfaces , 2001 .

[170]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[171]  K. F. Chen,et al.  Observation of the Decay B0J , 2007 .

[172]  J. Engel,et al.  Temperature dependence of Ca2+ wave properties in cardiomyocytes: implications for the mechanism of autocatalytic Ca2+ release in wave propagation. , 1995, Biophysical journal.

[173]  A. Rosenhahn,et al.  Preferential cluster nucleation on long-range superstructures on Al2O3/Ni3Al(111) , 2001 .

[174]  Jascha Repp,et al.  Controlling the Charge State of Individual Gold Adatoms , 2004, Science.

[175]  M. Sushko,et al.  Modelling of non-contact atomic force microscopy imaging of individual molecules on oxide surfaces , 2006 .

[176]  C Joachim,et al.  Direct determination of the energy required to operate a single molecule switch. , 2003, Physical review letters.

[177]  J. Gale,et al.  Towards chemical identification in atomic-resolution noncontact afm imaging with silicon tips , 2003 .

[178]  G. Hamm,et al.  Bimetallic Pd–Au nanocluster arrays grown on nanostructured alumina templates , 2006 .

[179]  A. Kühnle,et al.  Evidence for potassium carbonate crystallites on air-cleaved mica surfaces. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[180]  E. Meyer,et al.  Forces with submolecular resolution between the probing tip and Cu-TBPP molecules on Cu(100) observed with a combined AFM/STM , 2001 .

[181]  C. Williams,et al.  Single-electron tunneling force spectroscopy of an individual electronic state in a nonconducting surface , 2006 .

[182]  Gerd Meyer,et al.  BASIC STEPS OF LATERAL MANIPULATION OF SINGLE ATOMS AND DIATOMIC CLUSTERS WITH A SCANNING TUNNELING MICROSCOPE TIP , 1997 .

[183]  A. Feltz,et al.  QPlus: atomic force microscopy on single-crystal insulators with small oscillation amplitudes at 5 K , 2009, Nanotechnology.

[184]  A. Madhukar,et al.  Manipulation of nanoparticles using dynamic force microscopy: simulation and experiments , 1998 .

[185]  W. A. Zisman,et al.  A NEW METHOD OF MEASURING CONTACT POTENTIAL DIFFERENCES IN METALS , 1932 .

[186]  E. McFarland,et al.  Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (vacuum versus ambient atmosphere). , 2008, Langmuir : the ACS journal of surfaces and colloids.

[187]  Jukka Lausmaa Surface spectroscopic characterization of titanium implant materials , 1996 .

[188]  J. Kasper,et al.  The crystal structure of Mg6MnO8 , 1954 .

[189]  H. Freund,et al.  Probing adsorption sites on thin oxide films by dynamic force microscopy , 2006 .

[190]  A. Foster,et al.  Understanding the atomic-scale contrast in Kelvin probe force microscopy. , 2009, Physical review letters.

[191]  S. Heinze,et al.  Role of tip size, orientation, and structural relaxations in first principles studies of magnetic exchange force microscopy and spin polarized scanning tunneling microscopy , 2008, 0811.2087.

[192]  Takahashi,et al.  Phase detection of electrostatic force by AFM with a conductive tip , 2000, Ultramicroscopy.

[193]  Aristides A. G. Requicha,et al.  Direct and controlled manipulation of nanometer-sized particles using the non-contact atomic force microscope , 1998 .

[194]  H. Freund,et al.  Atomically resolved force microscopy images of complex surface unit cells: Ultrathin alumina film on NiAl(110) , 2008 .

[195]  Masayuki Abe,et al.  Room-temperature reproducible spatial force spectroscopy using atom-tracking technique , 2005 .

[196]  A. Foster,et al.  Imaging nanoclusters in the constant height mode of the dynamic SFM , 2006, Nanotechnology.

[197]  R. Kötz,et al.  Electronic properties of Ag nanoparticle arrays. A Kelvin probe and high resolution XPS study. , 2007, Physical chemistry chemical physics : PCCP.

[198]  A. Belcher,et al.  Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy. , 2007, Nature nanotechnology.

[199]  H. Freund,et al.  Atomic resolution on MgO(001) by atomic force microscopy using a double quartz tuning fork sensor at low-temperature and ultrahigh vacuum , 2005 .

[200]  G. Cheng,et al.  Direct observation of photoinduced charge redistribution of WO3–TiO2 double layer nanocomposite films by photoassisted Kelvin force microscopy , 2006 .

[201]  S. Kämmer,et al.  Detecting electrical forces in noncontact atomic force microscopy , 1998 .

[202]  D. F. Ogletree,et al.  A study of the topographic and electrical properties of self-assembled islands of alkylsilanes on mica using a combination of non-contact force microscopy techniques , 2006, Nanotechnology.

[203]  J. Birch,et al.  Structure evolution of epitaxial Pd grown on MgO(001): a comparison between sputtering and electron-beam evaporation , 1999 .

[204]  Peter Hinterdorfer,et al.  Atomic force microscopy in bionanotechnology , 2008 .

[205]  A. Kühnle,et al.  Transition of Molecule Orientation during Adsorption of Terephthalic Acid on Rutile TiO2(110) , 2009 .

[206]  P. Grutter,et al.  The role of charge-induced defects in the growth of gold on an alkali halide surface , 2008 .

[207]  P. Girard,et al.  Electrical contrast observations and voltage measurements by Kelvin probe force gradient microscopy , 2002 .

[208]  L. Eng,et al.  Kelvin probe force microscopy of alkali chloride thin films on Au(111) , 2004 .

[209]  K. Wandelt,et al.  Surface structure of an ultrathin alumina film on Ni3Al(111): a dynamic scanning force microscopy study. , 2006, Physical review letters.

[210]  N. Wilson,et al.  Carbon nanotube tips for atomic force microscopy. , 2009, Nature nanotechnology.

[211]  A. Jäger-Waldau,et al.  High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy , 1999 .

[212]  J. E. Stern,et al.  Deposition and imaging of localized charge on insulator surfaces using a force microscope , 1988 .

[213]  Ashley R. Carter,et al.  Ultrastable atomic force microscopy: atomic-scale stability and registration in ambient conditions. , 2009, Nano letters.

[214]  Masayuki Abe,et al.  Atom tracking for reproducible force spectroscopy at room temperature with non-contact atomic force microscopy , 2005 .

[215]  Franz J. Giessibl,et al.  Advances in atomic force microscopy , 2003, cond-mat/0305119.

[216]  Vincenzo Palermo,et al.  Electronic Characterization of Organic Thin Films by Kelvin Probe Force Microscopy , 2006 .

[217]  Imaging of oxide charges and contact potential difference fluctuations in atomic layer deposited Al2O3 on Si , 2005 .

[218]  H. Ishida,et al.  Electronic properties calculation of MgO thin films adsorbed on semi-infinite Ag ( 001 ) , 2004 .

[219]  K. L. Kliewer Space charge in ionic crystals—III. Silver halides containing divalent cations , 1966 .

[220]  F. Jaque,et al.  Aggregation pathways and Suzuki phase formation in doped alkali halides , 1984 .

[221]  K. Schwarz,et al.  Structure and Properties of NaCl and the Suzuki Phase Na6CdCl8 , 2000 .

[222]  H. Hölscher,et al.  Determination of site specific interatomic forces between an iron coated tip and the NiO(0 0 1) surface by force field spectroscopy , 2003 .

[223]  M. Rohlfing,et al.  Cooperative mechanism for anchoring highly polar molecules at an ionic surface , 2009 .

[224]  Atomic-resolution imaging of clean and hydrogen-terminated C(100)-(2×1) diamond surfaces using noncontact AFM , 2010 .

[225]  T. Zambelli,et al.  Mapping van der Waals forces with frequency modulation dynamic force microscopy , 2006, Nanotechnology.

[226]  E. Meyer,et al.  Functionalized truxenes: adsorption and diffusion of single molecules on the KBr(001) surface. , 2010, ACS nano.

[227]  K. Fukui,et al.  Photoswitching behavior of a novel single molecular tip for noncontact atomic force microscopy designed for chemical identification. , 2006, The journal of physical chemistry. B.

[228]  M. Meyyappan,et al.  Combinatorial chips for optimizing the growth and integration of carbon nanofibre based devices , 2003 .

[229]  A. Shluger,et al.  Probing organic layers on the TiO2(110) surface. , 2005, The journal of physical chemistry. B.

[230]  S. Hosaka,et al.  Vacuum compatible high‐sensitive Kelvin probe force microscopy , 1996 .

[231]  S. Morita,et al.  Atomic structure of Ge clusters on Si(111)-(7 × 7) by non-contact AFM , 2007 .

[232]  Hal Edwards,et al.  Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor , 1997 .

[233]  J. E. Stern,et al.  Localized charge force microscopy , 1990 .

[234]  R. Nieminen,et al.  Reactions and clustering of water with silica surface. , 2005, The Journal of chemical physics.

[235]  G. Ertl,et al.  Kinetic oscillations during the catalytic CO oxidation on Pd(110): The role of subsurface oxygen , 1989 .

[236]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[237]  C. Henry,et al.  Kelvin Probe Force Microscopy on MgO(001) Surfaces and Supported Pd Nanoclusters , 2009 .

[238]  C. Cros,et al.  Structure, ionic motion and conductivity in some solid-solutions of the LiClMCl2 systems (M=Mg,V,Mn) , 1983 .

[239]  A. Stieg,et al.  A flexible, highly stable electrochemical scanning probe microscope for nanoscale studies at the solid-liquid interface. , 2008, The Review of scientific instruments.

[240]  D. Fotiadis,et al.  Quantitative dynamic-mode scanning force microscopy in liquid, , 2006 .

[241]  J. Gale,et al.  Simulating atomic force microscopy imaging of the ideal and defected TiO2 (110) surface , 2003 .

[242]  Franz J. Giessibl,et al.  Noncontact Atomic Force Microscopy: Volume 3 , 2009 .

[243]  S. Jarvis,et al.  Direct imaging of lipid-ion network formation under physiological conditions by frequency modulation atomic force microscopy. , 2007, Physical review letters.

[244]  T. Glatzel,et al.  Analytical Approach to the Local Contact Potential Difference on (001) Ionic Surfaces:~Implications for Kelvin Probe Force Microscopy , 2008, 0807.1431.

[245]  B. Hammer,et al.  Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study , 2005 .

[246]  A. Rosenhahn,et al.  Oxidation of Ni3Al(111) at 600, 800, and 1050 K investigated by scanning tunneling microscopy , 2000 .

[247]  S. Goedecker,et al.  Structure and stability of semiconductor tip apexes for atomic force microscopy , 2009, Nanotechnology.

[248]  Hemantha K. Wickramasinghe,et al.  Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .

[249]  Georg Kresse,et al.  Structure of the Ultrathin Aluminum Oxide Film on NiAl(110) , 2005, Science.

[250]  M. Böhmer,et al.  A versatile Kelvin probe for dynamic work function change measurements during gas adsorption and in situ film growth experiments , 1997 .

[251]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[252]  C. Henry,et al.  Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy. , 2003, Physical review letters.

[253]  A. Foster,et al.  Topography and work function measurements of thin MgO(001) films on Ag(001) by nc-AFM and KPFM. , 2010, Physical chemistry chemical physics : PCCP.

[254]  Bharat Bhushan,et al.  On the nanoscale measurement of friction using atomic-force microscope cantilever torsional resonances , 2003 .

[255]  Ng,et al.  Evidence for the Tunneling Site on Transition-Metal Oxides: TiO2(110). , 1996, Physical review letters.

[256]  A. Foster,et al.  AFM tip characterization by Kelvin probe force microscopy , 2010 .

[257]  H. Onishi,et al.  Oxygen-atom vacancies imaged by a noncontact atomic force microscope operated in an atmospheric pressure of N2 gas , 2004 .

[258]  Jian Shen,et al.  Growth of low-dimensional magnetic nanostructures on an insulator , 2002 .

[259]  C. Williams,et al.  Single electron tunneling detected by electrostatic force , 2001 .

[260]  I. Lundström,et al.  Gas‐induced restructuring of palladium model catalysts studied with atomic force microscopy , 1991 .

[261]  M. Salmeron,et al.  Adsorption of Water on Alkali Halide Surfaces Studied by Scanning Polarization Force Microscopy , 1998 .

[262]  Alvarado,et al.  Observation of single charge carriers by force microscopy. , 1990, Physical review letters.

[263]  L. Giordano,et al.  Tuning the surface metal work function by deposition of ultrathin oxide films: Density functional calculations , 2006 .

[264]  G. Binnig,et al.  True Atomic Resolution by Atomic Force Microscopy Through Repulsive and Attractive Forces , 1993, Science.

[265]  R. Bennewitz,et al.  A kelvin probe force microscopy of charged indentation-induced dislocation structures in KBr , 2009, Nanotechnology.

[266]  Paul K. Hansma,et al.  Molecular-resolution images of Langmuir-Blodgett films and DNA by atomic force microscopy , 1991 .

[267]  S. Krischok,et al.  Metal (Cu; Pd) adsorption on MgO: investigations with MIES and UPS , 2006 .

[268]  S. Morita,et al.  Non-contact atomic force microscopy study of atomic manipulation on an insulator surface by nanoindentation , 2006, Nanotechnology.

[269]  T. Terai,et al.  Charging effect on work function measurements of lithium ceramics under irradiation , 2003 .

[270]  G. D. Loubens,et al.  Dispersive charge transport along the surface of an insulating layer observed by Electrostatic Force Microscopy , 2003, cond-mat/0312471.

[271]  J. Mannhart,et al.  Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy , 1999 .

[272]  S. Gauthier,et al.  Step-induced tip polarity reversal investigated by dynamic force microscopy on KBr(001) , 2008, Nanotechnology.

[273]  C. Henry,et al.  Kelvin probe force microscopy on surfaces of UHV cleaved ionic crystals , 2006, Nanotechnology.

[274]  The energetics and electronic structure of defective and irregular surfaces on MgO , 1995, mtrl-th/9505001.

[275]  O. Custance,et al.  Lateral manipulation of single atoms at semiconductor surfaces using atomic force microscopy , 2005 .

[276]  P. Porta,et al.  Structural, magnetic, and optical investigation of Ni6MnO8 , 1991 .

[277]  Meyer,et al.  Ultrahigh-vacuum scanning force microscopy: Atomic-scale resolution at monatomic cleavage steps. , 1994, Physical review. B, Condensed matter.

[278]  G. Pacchioni,et al.  Work function changes induced by deposition of ultrathin dielectric films on metals: A theoretical analysis , 2008 .

[279]  J. Astier,et al.  TEM-assisted dynamic scanning force microscope imaging of (001) antigorite: Surfaces and steps on a modulated silicate , 2010 .

[280]  P. Jelínek,et al.  New insights on atomic-resolution frequency-modulation Kelvin-probe force-microscopy imaging of semiconductors. , 2009, Physical review letters.

[281]  A. Shluger,et al.  Study of the surface electronic structure of MgO bulk crystals and thin films , 1996 .

[282]  G. Thornton,et al.  A non-contact atomic force microscopy and 'force spectroscopy' study of charging on oxide surfaces , 2004 .

[283]  D. Deresmes,et al.  Probing nanoscale dipole-dipole interactions by electric force microscopy. , 2004, Physical review letters.

[284]  C. Henry,et al.  Imaging Suzuki precipitates on NaCl : Mg2+ (001) by scanning force microscopy. , 2008, Physical review letters.

[285]  P. Piatkowski,et al.  Lateral resolution and potential sensitivity in Kelvin probe force microscopy: Towards understanding of the sub-nanometer resolution , 2008 .

[286]  F. Besenbacher,et al.  Atomic scale Kelvin probe force microscopy studies of the surface potential variations on the TiO2(110) surface. , 2008, Physical review letters.

[287]  Dongping Liu,et al.  A review of advanced scanning probe microscope analysis of functional films and semiconductor devices , 2009 .

[288]  K. Matsushige,et al.  True-molecular resolution imaging by frequency modulation atomic force microscopy in various environments , 2005 .

[289]  A. Engel,et al.  Atomic force microscopy of biological membranes. , 2009, Biophysical journal.

[290]  Volker Deckert,et al.  Tip-enhanced Raman scattering. , 2008, Chemical Society reviews.

[291]  P. L. Pratt,et al.  The precipitation of the cubic Suzuki phase in NaCl: Cd2+ and NaCl: Mg2+ , 1981 .

[292]  Y. Ueda,et al.  Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. , 2010, Physical review letters.

[293]  H. Güntherodt,et al.  Sublattice identification in scanning force microscopy on alkali halide surfaces. , 2004, Physical review letters.

[294]  Hans-Joachim Freund,et al.  Structure and defects of an ordered alumina film on NiAl(110) , 1994 .

[295]  J. Bohr,et al.  A technique for positioning nanoparticles using an atomic force microscope , 1998 .

[296]  Klaus Kern,et al.  Nucleation and growth of supported clusters at defect sites: Pd/MgO(001) , 2000 .

[297]  W. Jhe,et al.  Study of a nanoscale water cluster by atomic force microscopy. , 2009, Faraday discussions.

[298]  Claude R. Henry,et al.  Surface studies of supported model catalysts , 1998 .

[299]  K. Venkataramani,et al.  Ordering of monodisperse Ni nanoclusters by templating on high-temperature reconstructed α-Al2O3(0001) , 2010, Nanotechnology.

[300]  M. Ishikawa,et al.  Atomic resolution noncontact atomic force and scanning tunneling microscopy of TiO2(110)-(1 x 1) and - (1 x 2): simultaneous imaging of surface structures and electronic states. , 2001, Physical review letters.

[301]  Masatake Haruta,et al.  Size- and support-dependency in the catalysis of gold , 1997 .

[302]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[303]  Francesco Stellacci,et al.  Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. , 2010, Nature nanotechnology.

[304]  R. Tchitnga,et al.  Femtosecond‐laser photoemission and photodesorption from magnesia supported gold clusters , 2010 .

[305]  R. Whitworth Charged dislocations in ionic crystals , 1975 .

[306]  Lord Kelvin,et al.  V. Contact electricity of metals , 1898 .

[307]  R. Wiesendanger,et al.  Magnetic exchange force microscopy with atomic resolution , 2007, Nature.

[308]  M. Reichling,et al.  Structural elements of CeO2(111) surfaces , 2007 .

[309]  R. Tchitnga,et al.  Femtosecond-Laser Photoemission Spectroscopy of Mo(100) Covered by Ultrathin MgO(100) Films of Variable Thickness , 2009 .

[310]  K. L. Kliewer Space Charge in Ionic Crystals. II. The Electron Affinity and Impurity Accumulation , 1965 .

[311]  J B Pethica,et al.  Energy dissipation in atomic force microscopy and atomic loss processes. , 2001, Physical review letters.

[312]  Peter Liljeroth,et al.  Amplifying the Pacific Climate System Response to a Small 11-Year Solar Cycle Forcing , 2009, Science.

[313]  K. Rieder,et al.  Ionic films on vicinal metal surfaces: enhanced binding due to charge modulation. , 2001, Physical review letters.

[314]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[315]  S. Torbruegge,et al.  Atomic scale evidence for faceting stabilization of a polar oxide surface , 2008 .

[316]  E. Meyer,et al.  Atomically resolved edges and kinks of NaCl islands on Cu(111) : experiment and theory , 2000 .

[317]  G. A. Bassett,et al.  Surface aggregation of impurity in manganese-doped alkali halide crystals , 1976 .

[318]  A. Kühnle,et al.  True atomic-resolution imaging of (1014) calcite in aqueous solution by frequency modulation atomic force microscopy. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[319]  A. Shluger,et al.  Multiscale model of the manipulation of single atoms on insulating surfaces using an atomic force microscope tip , 2007 .

[320]  C. Henry,et al.  Gold nanoclusters on alkali halide surfaces : charging and tunneling , 2006 .

[321]  W. Pai,et al.  A quantitative analysis of the shape transition of Ge islands on Si(100) with NC-AFM , 2005 .

[322]  M. Reichling,et al.  Imaging the atomic arrangements on the high-temperature reconstructed α-Al2O3(0001) surface , 2001, Nature.

[323]  Franz J. Giessibl,et al.  Atomic resolution on Si(111)-(7×7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork , 2000 .

[324]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[325]  A. Kühnle,et al.  Surface Reconstruction Induced by Transition Metal Doping of Rutile Titanium Dioxide (110) , 2009 .

[326]  Paul Girard,et al.  Electrostatic force microscopy: principles and some applications to semiconductors , 2001 .

[327]  Franz J. Giessibl,et al.  The Force Needed to Move an Atom on a Surface , 2008, Science.

[328]  D. Klinov,et al.  True molecular resolution in tapping-mode atomic force microscopy with high-resolution probes , 2004 .

[329]  Seizo Morita,et al.  Atomic force microscopy as a tool for atom manipulation. , 2009, Nature nanotechnology.

[330]  J. Hobbs,et al.  Torsional resonance atomic force microscopy in water , 2008 .

[331]  R. Maboudian,et al.  Structure and morphology of annealed gold films galvanically displaced on the Si(111) surface , 2007 .

[332]  M. Payne,et al.  ROLE OF COVALENT TIP-SURFACE INTERACTIONS IN NONCONTACT ATOMIC FORCE MICROSCOPY ON REACTIVE SURFACES , 1997 .

[333]  A. Sasahara,et al.  Local work function analysis of Pt/TiO2 photocatalyst by a Kelvin probe force microscope , 2007 .

[334]  H. Freund,et al.  Molecular beam experiments on model catalysts , 2005 .

[335]  E. Meyer,et al.  Atomic corrugation in nc-AFM of alkali halides , 2002 .

[336]  R. P. Andres,et al.  Substrate induced deformation of nanometer-size gold clusters studied by non-contact AFM and TEM , 1994 .

[337]  A. Shluger,et al.  Unambiguous determination of the adsorption geometry of a metal--organic complex on a bulk insulator. , 2010, Nano letters.

[338]  A. Kühnle,et al.  How flat is an air-cleaved mica surface? , 2008, Nanotechnology.

[339]  H. Güntherodt,et al.  Measuring site-specific cluster-surface bond formation. , 2005, Journal of the American Chemical Society.

[340]  E. Altman,et al.  Three‐Dimensional Atomic Force Microscopy – Taking Surface Imaging to the Next Level , 2010, Advanced materials.

[341]  C. Williams,et al.  Imaging of localized electronic states at a nonconducting surface by single-electron tunneling force microscopy. , 2006, Nano letters.

[342]  M. Reichling,et al.  Lateral manipulation of atomic size defects on the CaF2(111) surface , 2006, Nanotechnology.

[343]  Masayuki Abe,et al.  Chemical identification of individual surface atoms by atomic force microscopy , 2007, Nature.

[344]  C. Quate,et al.  Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite. , 2005, Physical Review Letters.

[345]  C. Henry,et al.  NaCl(001) surfaces nanostructured by Suzuki precipitates: a scanning force microscopy study , 2009 .

[346]  Daniel J Müller,et al.  Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. , 2008, Nature nanotechnology.

[347]  Antoine Kahn,et al.  Molecular level alignment at organic semiconductor-metal interfaces , 1998 .

[348]  Y. Iwasawa,et al.  Structural features of CeO2(111) revealed by dynamic SFM , 2005 .

[349]  J. Gale,et al.  Interaction of silicon dangling bonds with insulating surfaces. , 2004, Physical review letters.

[350]  P. Grutter,et al.  High-resolution investigation of metal nanoparticle growth on an insulating surface , 2009 .

[351]  Volker Deckert,et al.  Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. , 2008, Angewandte Chemie.

[352]  J. Frankel Kinetic theory of liquids , 1946 .

[353]  H. Onishi,et al.  Probe microscope observation of platinum atoms deposited on the TiO2(110)-(1 x 1) surface. , 2006, The journal of physical chemistry. B.

[354]  Paul K. Hansma,et al.  Wet lipid-protein membranes imaged at submolecular resolution by atomic force microscopy , 1990 .

[355]  S. Torbruegge,et al.  Morphology of step structures on CeO2(111) , 2008 .

[356]  J. Lauritsen,et al.  Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[357]  J. Fiasson,et al.  UHV equipment for Kelvin measurement of surface charge , 1977 .