Best-Practice Criteria for Practical Security of Self-Differencing Avalanche Photodiode Detectors in Quantum Key Distribution

© 2018 American Physical Society. Fast-gated avalanche photodiodes (APDs) are the most commonly used single photon detectors for high-bit-rate quantum key distribution (QKD). Their robustness against external attacks is crucial to the overall security of a QKD system, or even an entire QKD network. We investigate the behavior of a gigahertz-gated, self-differencing (In,Ga)As APD under strong illumination, a tactic Eve often uses to bring detectors under her control. Our experiment and modeling reveal that the negative feedback by the photocurrent safeguards the detector from being blinded through reducing its avalanche probability and/or strengthening the capacitive response. Based on this finding, we propose a set of best-practice criteria for designing and operating fast-gated APD detectors to ensure their practical security in QKD.

[1]  Marco Lucamarini,et al.  Quantum key distribution with hacking countermeasures and long term field trial , 2017, Scientific Reports.

[2]  N. Namekata,et al.  800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. , 2006, Optics express.

[3]  J. F. Dynes,et al.  Room temperature single-photon detectors for high bit rate quantum key distribution , 2014 .

[4]  T Honjo,et al.  High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes. , 2011, Optics express.

[5]  Masahide Sasaki,et al.  High-speed wavelength-division multiplexing quantum key distribution system. , 2012, Optics letters.

[6]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[7]  Andrew J. Shields,et al.  Long-distance quantum key distribution secure against coherent attacks , 2017 .

[8]  Nicolas Gisin,et al.  Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature , 2012, 1205.3084.

[9]  Xiuliang Chen,et al.  Low-Timing-Jitter Single-Photon Detection Using 1-GHz Sinusoidally Gated InGaAs/InP Avalanche Photodiode , 2011, IEEE Photonics Technology Letters.

[10]  Jean Pierre von der Weid,et al.  Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems. , 2012, Optics express.

[11]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[12]  Andrew G. Glen,et al.  APPL , 2001 .

[13]  A. W. Sharpe,et al.  High speed single photon detection in the near-infrared , 2007, 0707.4307.

[14]  Zach DeVito,et al.  Opt , 2017 .

[15]  Marco Lucamarini,et al.  10-Mb/s Quantum Key Distribution , 2018, Journal of Lightwave Technology.

[16]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[17]  Mu-Sheng Jiang,et al.  Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems , 2013 .

[18]  Gerald S. Buller,et al.  Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode , 2009 .

[19]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[20]  Alan L. Migdall,et al.  Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz , 2013 .

[21]  Vadim Makarov,et al.  Controlling an actively-quenched single photon detector with bright light. , 2008, Optics express.

[22]  James F. Dynes,et al.  Avoiding the blinding attack in QKD , 2010 .

[23]  A. Tomita,et al.  Efficient and low-noise single-photon avalanche photodiode for 1.244-GHz clocked quantum key distribution. , 2011, Optics express.

[24]  Andrew Sharpe,et al.  Field trial of a quantum secured 10 Gb/s DWDM transmission system over a single installed fiber. , 2014, Optics express.

[25]  A. W. Sharpe,et al.  A High Speed, Post-Processing Free, Quantum Random Number Generator , 2008, ArXiv.

[26]  Wei Chen,et al.  Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse , 2017 .

[27]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[28]  J. Dynes,et al.  Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. , 2008, Optics express.

[29]  Jun Zhang,et al.  Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes , 2009, 0908.2230.

[30]  J. F. Dynes,et al.  Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography , 2011, 1106.2675.

[31]  Jian-Wei Pan,et al.  Long-distance copropagation of quantum key distribution and terabit classical optical data channels , 2016, 1610.04475.

[32]  Probing higher order correlations of the photon field with photon number resolving avalanche photodiodes. , 2011, Optics express.

[33]  Dag R. Hjelme,et al.  Faked states attack on quantum cryptosystems , 2005 .

[34]  J. Skaar,et al.  After-gate attack on a quantum cryptosystem , 2010, 1009.2683.

[35]  T. P. Lee,et al.  Depletion layer capacitance of cyclindrical and spherical p-n junctions , 1967 .

[36]  J. F. Dynes,et al.  Gigacount/second photon detection with InGaAs avalanche photodiodes , 2012 .

[37]  Pascal Junod,et al.  A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing , 2013, 1309.2583.