Transparent boundary conditions for MHD simulations in stratified atmospheres

Abstract In this paper we discuss a method of deriving artificial nonreflecting boundary conditions for systems of conservation laws. We focus on an application from solar physics. The governing equations are the equations of ideal compressible magnetohydrodynamics (MHD), which are solved in a gravitationally stratified atmosphere. We derive the necessary equations, discuss implementational aspects, and show the effectiveness and efficiency of our boundary conditions in test calculations.

[1]  Ivan Sofronov,et al.  Non-reflecting Inflow and Outflow in a Wind Tunnel for Transonic Time-Accurate Simulation , 1998 .

[2]  Eli Turkel,et al.  Far field boundary conditions for compressible flows , 1982 .

[3]  E. Turkel,et al.  Absorbing PML boundary layers for wave-like equations , 1998 .

[4]  P. Caligari,et al.  Emerging flux tubes in the solar convection zone. 1: Asymmetry, tilt, and emergence latitude , 1995 .

[5]  Semyon Tsynkov,et al.  Artificial boundary conditions for the numerical solution of external viscous flow problems , 1995 .

[6]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[7]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers. Definitions, theorems, and formulas for reference and review , 1968 .

[8]  Leslie Greengard,et al.  Rapid Evaluation of Nonreflecting Boundary Kernels for Time-Domain Wave Propagation , 2000, SIAM J. Numer. Anal..

[9]  Marcus J. Grote,et al.  Exact Nonreflecting Boundary Condition For Elastic Waves , 2000, SIAM J. Appl. Math..

[10]  M. Schuessler Magnetic buoyancy revisited: analytical and numerical results for rising flux tubes. , 1979 .

[11]  Dietmar Kröner,et al.  ABSORBING BOUNDARY CONDITIONS FOR THE LINEARIZED EULER EQUATIONS IN 2-D , 1991 .

[12]  T. Emonet,et al.  The Physics of Twisted Magnetic Tubes Rising in a Stratified Medium: Two-dimensional Results , 1997, astro-ph/9711043.

[13]  E. Zweibel,et al.  Two-dimensional Simulations of Buoyantly Rising, Interacting Magnetic Flux Tubes , 1998 .

[14]  D. Givoli Non-reflecting boundary conditions , 1991 .

[15]  Marcus J. Grote,et al.  Nonreflecting Boundary Conditions for Maxwell's Equations , 1998 .

[16]  Peter G. Petropoulos,et al.  Reflectionless Sponge Layers as Absorbing Boundary Conditions for the Numerical Solution of Maxwell Equations in Rectangular, Cylindrical, and Spherical Coordinates , 2000, SIAM J. Appl. Math..

[17]  P. Caligari,et al.  Emerging Flux Tubes in the Solar Convection Zone. II. The Influence of Initial Conditions , 1998 .

[18]  Andrew J. Majda,et al.  Numerical Radiation Boundary Conditions for Unsteady Transonic Flow , 1981 .

[19]  Å. Nordlund,et al.  3-D simulations of solar and stellar convection and magnetoconvection , 1990 .

[20]  Ivan Sofronov,et al.  Artificial boundary conditions of absolute transparency for two- and three-dimensional external time-dependent scattering problems , 1998, European Journal of Applied Mathematics.

[21]  R. Chevalier The stability of an accelerating shock wave in an exponential atmosphere , 1990 .

[22]  Marcus J. Grote,et al.  Nonreflecting Boundary Conditions for Time-Dependent Scattering , 1996 .

[23]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[24]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[25]  David Gottlieb,et al.  On the construction and analysis of absorbing layers in CEM , 1998 .

[26]  Paul R. Woodward,et al.  A simple Riemann solver and high-order Godunov schemes for hyperbolic systems of conservation laws , 1995 .

[27]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .