On the Use of Compressed Polyhedral Quadrature Formulas in Embedded Interface Methods

The main idea of this paper is to apply a recent quadrature compression technique to algebraic quadrature formulas on complex polyhedra. The quadrature compression substantially reduces the number of integration points but preserves the accuracy of integration. The compression is easy to achieve since it is entirely based on the fundamental methods of numerical linear algebra. The resulting compressed formulas are applied in an embedded interface method to integrate the weak form of the Navier--Stokes equations. Simulations of flow past stationary and moving interface problems demonstrate that the compressed quadratures improve the efficiency of performing the weak form integration, while preserving accuracy and order of convergence. (An erratum is attached.)

[1]  Wolfgang A. Wall,et al.  An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: Application to embedded interface methods , 2014, J. Comput. Phys..

[2]  Frédéric Gibou,et al.  Geometric integration over irregular domains with application to level-set methods , 2007, J. Comput. Phys..

[3]  W. Wall,et al.  A face‐oriented stabilized Nitsche‐type extended variational multiscale method for incompressible two‐phase flow , 2015 .

[4]  Mao Sun,et al.  Aerodynamic forces and flow structures of an airfoil in some unsteady motions at small Reynolds number , 2000 .

[5]  Gautam Dasgupta,et al.  Integration within Polygonal Finite Elements , 2003 .

[6]  Carlo Cattani,et al.  Boundary integration over linear polyhedra , 1990, Comput. Aided Des..

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  G. te Velde,et al.  Three‐dimensional numerical integration for electronic structure calculations , 1988 .

[9]  N. Sukumar,et al.  Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons , 2011 .

[10]  Brian Mirtich,et al.  Fast and Accurate Computation of Polyhedral Mass Properties , 1996, J. Graphics, GPU, & Game Tools.

[11]  B. Singh,et al.  New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra , 2001 .

[12]  Daan Huybrechs,et al.  Stable high-order quadrature rules with equidistant points , 2009, J. Comput. Appl. Math..

[13]  D. Tsoulis Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals , 2012 .

[14]  Wolfgang A. Wall,et al.  Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods , 2013 .

[15]  W. Plesniak,et al.  Multivariate Jackson Inequality , 2009, J. Comput. Appl. Math..

[16]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[17]  H. Timmer,et al.  Computation of global geometric properties of solid objects , 1980 .

[18]  F. Kummer,et al.  Simple multidimensional integration of discontinuous functions with application to level set methods , 2012 .

[19]  Alexander Düster,et al.  Numerical integration of discontinuities on arbitrary domains based on moment fitting , 2016 .

[20]  Alvise Sommariva,et al.  Computing approximate Fekete points by QR factorizations of Vandermonde matrices , 2009, Comput. Math. Appl..

[21]  Jean B. Lasserre,et al.  Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra , 2015, Computational Mechanics.

[22]  Zydrunas Gimbutas,et al.  A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions , 2010, Comput. Math. Appl..

[23]  A. Dobrovolskis,et al.  INERTIA OF ANY POLYHEDRON , 1996 .

[24]  Malik Magdon-Ismail,et al.  On selecting a maximum volume sub-matrix of a matrix and related problems , 2009, Theor. Comput. Sci..

[25]  Alvise Sommariva,et al.  Compression of Multivariate Discrete Measures and Applications , 2015 .

[26]  N. Sukumar,et al.  Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .

[27]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[28]  Stéphane Bordas,et al.  Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping , 2009 .

[29]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[30]  Xiangmin Jiao,et al.  hp‐Generalized FEM and crack surface representation for non‐planar 3‐D cracks , 2009 .

[31]  M. M. Rashid,et al.  A three‐dimensional finite element method with arbitrary polyhedral elements , 2006 .

[32]  Yuan Xu,et al.  Orthogonal Polynomials of Several Variables , 2014, 1701.02709.

[33]  Mihai Putinar,et al.  A note on Tchakaloff’s Theorem , 1997 .

[34]  Alvise Sommariva,et al.  Polynomial interpolation and cubature over polygons , 2011, J. Comput. Appl. Math..

[35]  G. Ventura On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite‐Element Method , 2006 .

[36]  P. Milbradt,et al.  Polytope finite elements , 2008 .

[37]  Efficient isoparametric integration over arbitrary space-filling Voronoi polyhedra for electronic structure calculations , 2011, 1105.4888.

[38]  Alvise Sommariva,et al.  Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra , 2010, SIAM J. Numer. Anal..

[39]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[40]  Benedikt Schott,et al.  A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier–Stokes equations , 2014 .

[41]  W. Wall,et al.  An extended residual-based variational multiscale method for two-phase flow including surface tension , 2011 .

[42]  G. Golub,et al.  Linear least squares solutions by householder transformations , 1965 .

[43]  Benedikt Schott,et al.  A stabilized Nitsche‐type extended embedding mesh approach for 3D low‐ and high‐Reynolds‐number flows , 2016 .

[44]  Markus H. Gross,et al.  A Finite Element Method on Convex Polyhedra , 2007, Comput. Graph. Forum.