Ultra-compact nonvolatile plasmonic phase change modulators and switches with dual electrical-optical functionality

Programmable photonic integrated circuits (PICs) are the foundation of on-chip optical technologies with the optical modulators being one of the main building blocks of such programmable PICs. However, most of the available modulators suffer from high power consumption, low response time and large footprint. Additionally, they show a large resistance modulation, thus they require high switching voltage. In consequence, they operate much above CMOS-compatible voltages of 1.2 V and with high insertion losses. Furthermore, the state and information they carry are lost once the power is turned off – so, they are volatile. Thus, realizing modulators and phase shifters that overcome all of those problems still remain a challenge. To overcome some of those limitations the nonvolatile phase change materials implemented in the plasmonic structures are proposed that can offer many advantages as a result of high electric field interaction with nonvolatile materials. Consequently, proposed here novel plasmonic nonvolatile switches can operate by phase modulation, absorption modulation, or both and under zero-static power. Thus, only 230 nm long active waveguide is needed to attain full π phase delay with an insertion loss of 0.12 dB. Apart from it, when operating by amplitude modulation an extinction ration exceeding 2.2 dB/μm can be achieved while an insertion loss is kept at 0.185 dB/μm. Furthermore, the heating mechanism can be based on the external heaters, internal heaters, electrical (memory) switching or optical switching mechanism what provide a lot of flexibility in terms of a design and requirements.

[1]  C. David Wright,et al.  Chalcogenide phase-change devices for neuromorphic photonic computing , 2021 .

[3]  Nathan Youngblood,et al.  Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing , 2020, Optica.

[4]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[5]  A. Majumdar,et al.  Modeling Electrical Switching of Nonvolatile Phase-Change Integrated Nanophotonic Structures with Graphene Heaters. , 2020, ACS applied materials & interfaces.

[6]  O. Muskens,et al.  A New Family of Ultralow Loss Reversible Phase‐Change Materials for Photonic Integrated Circuits: Sb2S3 and Sb2Se3 , 2020, Advanced Functional Materials.

[7]  Juerg Leuthold,et al.  Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon , 2018, Nature Materials.

[8]  Tian Gu,et al.  Myths and truths about optical phase change materials: A perspective , 2021, Applied Physics Letters.

[9]  Linjie Zhou,et al.  Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material. , 2019, Science bulletin.

[10]  Wolfgang Freude,et al.  Surface plasmon polariton absorption modulator. , 2011, Optics express.

[11]  A. Dereux,et al.  Power monitoring in dielectric-loaded plasmonic waveguides with internal Wheatstone bridges. , 2013, Optics express.

[12]  Jie Sun,et al.  Adiabatic thermo-optic Mach-Zehnder switch. , 2013, Optics letters.

[13]  K. S. Raghavan,et al.  Electric field-induced filament formation in AsTeGe glass , 1970 .

[14]  A. Brimont,et al.  Toward Nonvolatile Switching in Silicon Photonic Devices , 2021, Laser & Photonics Reviews.

[15]  Jacek Gosciniak,et al.  Plasmonic nonvolatile memory crossbar arrays for artificial neural networks , 2021, ArXiv.

[16]  Chan-Hyun Youn,et al.  Silicon-Based Optical Phased Array Using Electro-Optic $p$ -$i$ -$n$ Phase Shifters , 2019, IEEE Photonics Technology Letters.

[17]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[18]  Paul R. Prucnal,et al.  Progress in neuromorphic photonics , 2017 .

[19]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[20]  Hang,et al.  Ultra-low-power nonvolatile integrated photonic switches and modulators based on nanogap-enhanced phase-change waveguides , 2020 .

[21]  Xuan Li,et al.  Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality , 2018, Science Advances.

[22]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[23]  Volker J. Sorger,et al.  Review and perspective on ultrafast wavelength‐size electro‐optic modulators , 2015 .

[24]  Hitoshi Kawashima,et al.  Current-driven phase-change optical gate switch using indium–tin-oxide heater , 2017 .

[25]  L Vivien,et al.  Simplified modeling and optimization of silicon modulators based on free-carrier plasma dispersion effect. , 2016, Optics express.

[26]  C. Wright,et al.  Nonvolatile All‐Optical 1 × 2 Switch for Chipscale Photonic Networks , 2017 .

[27]  Yi Ren,et al.  Toward non-volatile photonic memory: concept, material and design , 2018 .

[28]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[29]  John E. Bowers,et al.  Perspective on the future of silicon photonics and electronics , 2021 .

[30]  Ke Li,et al.  Multipurpose silicon photonics signal processor core , 2017, Nature Communications.

[31]  L. Liu,et al.  High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond , 2018, Nature Photonics.

[32]  V. Shalaev,et al.  1 Supplementary Information : Low loss Plasmon-assisted electro-optic modulator , 2018 .

[33]  Laurent Markey,et al.  Thermo-optic control of dielectric-loaded plasmonic waveguide components. , 2010, Optics express.

[34]  A. Adibi,et al.  Tunable nanophotonics enabled by chalcogenide phase-change materials , 2020, 2001.06335.

[35]  N. Harris,et al.  Efficient, compact and low loss thermo-optic phase shifter in silicon. , 2014, Optics express.

[36]  J. Kong,et al.  Multi‐Level Electro‐Thermal Switching of Optical Phase‐Change Materials Using Graphene , 2020, 2007.07944.

[37]  W. Pernice,et al.  Optoelectromechanical phase shifter with low insertion loss and a 13π tuning range. , 2020, Optics express.

[38]  J. Gosciniak Waveguide-Integrated Plasmonic Photodetectors and Activation Function Units With Phase Change Materials , 2021, IEEE Photonics Journal.

[39]  A. Rickman The commercialization of silicon photonics , 2014, Nature Photonics.

[40]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[41]  Qixiang Cheng,et al.  Photonic switching in high performance datacenters [Invited]. , 2018, Optics express.

[42]  Wolfgang Freude,et al.  Silicon–Organic and Plasmonic–Organic Hybrid Photonics , 2017 .

[43]  Rachel Won,et al.  Integrating silicon photonics , 2010 .

[44]  Sergey I. Bozhevolnyi,et al.  Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) , 2014, 2015 International Conference on Optical MEMS and Nanophotonics (OMN).

[45]  A. Dereux,et al.  Thermo-optic control of dielectric-loaded plasmonic Mach–Zehnder interferometers and directional coupler switches , 2012, Nanotechnology.

[46]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[47]  Mario Miscuglio,et al.  Artificial Synapse with Mnemonic Functionality using GSST-based Photonic Integrated Memory , 2019, 2020 International Applied Computational Electromagnetics Society Symposium (ACES).

[48]  Dirk Englund,et al.  Programmable photonic circuits , 2020, Nature.

[49]  S. Bozhevolnyi,et al.  Efficient interfacing photonic and long-range dielectric-loaded plasmonic waveguides. , 2015, Optics express.

[50]  R. Soref,et al.  Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. , 2018, Optics letters.

[51]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[52]  Eric Pop,et al.  Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater. , 2020, Advanced materials.

[53]  Kristjan Leosson,et al.  Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths. , 2011, Optics letters.

[54]  S. Bozhevolnyi,et al.  Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides , 2010, Journal of Lightwave Technology.

[55]  A. Dereux,et al.  Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides , 2012 .

[56]  G. Keeler,et al.  Gigahertz speed operation of epsilon-near-zero silicon photonic modulators , 2018 .

[57]  B. Corbett,et al.  Study of high order plasmonic modes on ceramic nanodisks. , 2017, Optics express.

[58]  Ray T. Chen,et al.  Heterogeneously integrated ITO plasmonic Mach–Zehnder interferometric modulator on SOI , 2020, Scientific reports.

[59]  Sergey I. Bozhevolnyi,et al.  Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides , 2013, Scientific Reports.