Analysis of a Least-Squares Soil Moisture Retrieval Algorithm from L-band Passive Observations

Abstract: The Soil Moisture and Ocean Salinity (SMOS) mission of the European SpaceAgency (ESA), launched on November 2009, is an unprecedented initiative to globallymonitor surface soil moisture using a novel 2-D L-band interferometric radiometer concept.Airborne campaigns and ground-based field experiments have proven that radiometersoperating at L-band are highly sensitive to soil moisture, due to the large contrast betweenthe dielectric constant of soil minerals and water. Still, soil moisture inversion from passivemicrowave observations is complex, since the microwave emission from soils dependsstrongly on its moisture content but also on other surface characteristics such as soil type,soil roughness, surface temperature and vegetation cover, and their contributions must becarefully de-coupled in the retrieval process. In the present study, different soil moistureretrieval configurations are examined, depending on whether prior information is used in theinversion process or not. Retrievals are formulated in terms of vertical (

[1]  Marcos Portabella,et al.  A probabilistic approach for SeaWinds data assimilation , 2004 .

[2]  Yann Kerr,et al.  SMOS: The Mission and the System , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[3]  T. Schmugge,et al.  Remote sensing in hydrology , 2002 .

[4]  R. Lacaze,et al.  A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models , 2003 .

[5]  Jeffrey P. Walker,et al.  A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  K. Shadan,et al.  Available online: , 2012 .

[7]  Robert J. Gurney,et al.  A sensitivity analysis of soil moisture retrieval from the tau-omega microwave emission model , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Dara Entekhabi,et al.  A remote sensing observatory for hydrologic sciences: A genesis for scaling to continental hydrology , 2006 .

[9]  Jiancheng Shi,et al.  Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data , 1997, IEEE Trans. Geosci. Remote. Sens..

[10]  I. Corbella,et al.  The SMOS end-to-end performance simulator: description and scientific applications , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[11]  W. Wagner,et al.  Global Soil Moisture Patterns Observed by Space Borne Microwave Radiometers and Scatterometers , 2008 .

[12]  T. Mo,et al.  A model for microwave emission from vegetation‐covered fields , 1982 .

[13]  Adriano Camps,et al.  Determination of the Sea Surface Salinity Error Budget in the Soil Moisture and Ocean Salinity Mission , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Anthony W. England,et al.  Vegetation canopy anisotropy at 1.4 GHz , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[15]  E. Njoku,et al.  Passive microwave remote sensing of soil moisture , 1996 .

[16]  Adriano Camps,et al.  Simulated SMOS Levels 2 and 3 Products: The Effect of Introducing ARGO Data in the Processing Chain and Its Impact on the Error Induced by the Vicinity of the Coast , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Manuel Martín-Neira,et al.  Polarimetric mode of MIRAS , 2002, IEEE Trans. Geosci. Remote. Sens..

[18]  Alessandra Monerris Belda Experimental estimation of soil emissivity and its application to soil moisture retrieval in the SMOS Mission , 2009 .

[19]  N. Bruguier,et al.  A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields , 1995 .

[20]  Carolina Gabarró,et al.  Toward an Optimal SMOS Ocean Salinity Inversion Algorithm , 2009, IEEE Geoscience and Remote Sensing Letters.

[21]  Yann Kerr,et al.  A simple parameterization of the L-band microwave emission from rough agricultural soils , 2001, IEEE Trans. Geosci. Remote. Sens..

[22]  Y. Kerr,et al.  L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields , 2007 .

[23]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[24]  Jeffrey P. Walker,et al.  Soil moisture retrievals at L-band using a two-step inversion approach (COSMOS/NAFE'05 Experiment) , 2009 .

[25]  Yann Kerr,et al.  A Simple Model of the Bare Soil Microwave Emission at L-Band , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Fawwaz Ulaby,et al.  Microwave Attenuation Properties of Vegetation Canopies , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Brian K. Hornbuckle,et al.  Diurnal variation of vertical temperature gradients within a field of maize: implications for Satellite microwave radiometry , 2005, IEEE Geoscience and Remote Sensing Letters.

[28]  Yann Kerr,et al.  N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[29]  T. Jackson,et al.  Remote sensing applications to hydrology: soil moisture , 1996 .

[30]  Jean-Pierre Wigneron,et al.  Global soil moisture retrieval from a synthetic L-band brightness temperature data set , 2003 .

[31]  Jean-Pierre Wigneron,et al.  The b-factor as a function of frequency and canopy type at H-polarization , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Adriano Camps,et al.  Performance of sea surface salinity and soil moisture retrieval algorithms with different auxiliary datasets in 2-D L-band aperture synthesis interferometric radiometers , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[33]  B. Choudhury,et al.  Effect of surface roughness on the microwave emission from soils , 1979 .

[34]  C. Swift,et al.  Microwave remote sensing , 1980, IEEE Antennas and Propagation Society Newsletter.

[35]  Mike Schwank,et al.  Topsoil Structure Influencing Soil Water Retrieval by Microwave Radiometry , 2004 .

[36]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[37]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[38]  Thomas J. Jackson,et al.  Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains Hydrology Experiment , 1999, IEEE Trans. Geosci. Remote. Sens..

[39]  Richard K. Moore,et al.  Microwave Remote Sensing , 1999 .

[40]  Edward J. Kim,et al.  Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval algorithm. , 2009 .

[41]  T. Schmugge,et al.  An Empirical Model for the Complex Dielectric Permittivity of Soils as a Function of Water Content , 1980, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Y. Kerr,et al.  Operational readiness of microwave remote sensing of soil moisture for hydrologic applications , 2007 .

[43]  Adriano Camps,et al.  Performance of soil moisture retrieval algorithms using multiangular L band brightness temperatures , 2010 .

[44]  B. Choudhury,et al.  Remote sensing of soil moisture content over bare field at 1.4 GHz frequency , 1981 .

[45]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models , 1985, IEEE Transactions on Geoscience and Remote Sensing.