Analysis of the Structural Characterization, Electric Transport, and Dielectrical Relaxation Behavior of Ba0.97La0.02Ti0.95Nb0.04O3 Electronic Ceramic

[1]  M. Bouazizi,et al.  Experimental-structural study, Raman spectroscopy, UV‐visible, and impedance characterizations of Ba0.97La0.02Ti0.9Nb0.08O3 polycrystalline sample , 2022, Journal of Molecular Structure.

[2]  Z. Iqbal,et al.  The Effect of Ca Dopant on the Electrical and Dielectric Properties of BaTi4O9 Sintered Ceramics , 2021, Materials.

[3]  Raghavendra Sagar,et al.  Structure and electrical properties characterization of NiMn2O4 NTC ceramics , 2021 .

[4]  M. B. Henda,et al.  Effect of Nb substitution on the structural, dielectric and modulus character of Ba0.97La0.02TiO3 ceramics , 2021, Inorganic Chemistry Communications.

[5]  N. Abdelmoula,et al.  Frequency and thermal studies of dielectric permittivity and Raman analysis of Ba0.97La0.02Ti0.98Nb0.016O3 , 2020, Journal of Materials Science: Materials in Electronics.

[6]  L. Beji,et al.  Raman spectra, photoluminescence, and low-frequency dielectric properties of Ba0.97La0.02Ti1−xNb4x/5O3 (x = 0.00, 0.05) ceramics at room temperature , 2020, Journal of Materials Science: Materials in Electronics.

[7]  K. Khirouni,et al.  Investigation of electrical properties and conduction mechanism using CBH model of Ba0.97La0.02Ti1−xNb4x/5O3 (x = 0.00 and 0.02) compounds , 2020, Applied Physics A.

[8]  Anu,et al.  Optical and dielectric properties of Bi2Ti2O7/Bi4Ti3O12 nanocomposite , 2020 .

[9]  M. B. Henda,et al.  Effect of Nb-doping on the structural and electrical properties of Ba0.97La0.02Ti1-xNb4x/5O3 ceramics at room temperature synthesized by molten-salt method , 2019, Journal of Alloys and Compounds.

[10]  B. K. Das,et al.  Investigation of structural, morphological and NTCR behaviour of Cu-doped ZnO nanoceramics synthesized by high energy ball milling , 2019, Materials Chemistry and Physics.

[11]  A. Baykal,et al.  Electrical Properties of Cerium and Yttrium Co-substituted Strontium Nanohexaferrites , 2018, Journal of Inorganic and Organometallic Polymers and Materials.

[12]  H. S. Tewari,et al.  Structural, dielectric and electrical characteristics of BiFeO3-NaNbO3 solid solutions , 2018, Ceramics International.

[13]  Xi Shen,et al.  Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers , 2017 .

[14]  Sabu Thomas,et al.  Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants , 2016 .

[15]  Zhenyu Hu,et al.  Fabrication of submicron La2O3-coated BaTiO3 particles and fine-grained ceramics with temperature-stable dielectric properties , 2014 .

[16]  K. Yadav,et al.  Study of dielectric, magnetic and magnetoelectric behavior of (x)NZF-(1-x)PLSZT multiferroic composites , 2014, IEEE Transactions on Dielectrics and Electrical Insulation.

[17]  Daniel Duprez,et al.  Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. , 2014, Chemical reviews.

[18]  D. Sun,et al.  Bipolar fatigue-resistant behavior in ternary Bi0.5Na0.5TiO3–BaTiO3–SrTiO3 solid solutions , 2014 .

[19]  J. Zhai,et al.  Property optimization of BST-based composite glass ceramics for energy-storage applications , 2014 .

[20]  V. Srdić,et al.  Structural characterization and dielectric properties of BaTiO3 thin films obtained by spin coating , 2014 .

[21]  S. K. Rout,et al.  Characterization and Rietveld Refinement of A-site deficient Lanthanum doped Barium Titanate , 2013 .

[22]  J. Hassan,et al.  Dielectric properties, impedance analysis and modulus behavior of CaTiO3 ceramic prepared by solid state reaction , 2013 .

[23]  Xingyi Huang,et al.  Fluoro-Polymer@BaTiO3 Hybrid Nanoparticles Prepared via RAFT Polymerization: Toward Ferroelectric Polymer Nanocomposites with High Dielectric Constant and Low Dielectric Loss for Energy Storage Application , 2013 .

[24]  Shihe Yang,et al.  Template synthesis of single-crystal-like porous SrTiO₃ nanocube assemblies and their enhanced photocatalytic hydrogen evolution. , 2013, ACS applied materials & interfaces.

[25]  Weidong Wu,et al.  Dielectric enhancement of BaTiO3/SrTiO3 superlattices with embedded Ni nanocrystals , 2012 .

[26]  A. Honda,et al.  Theoretical Study on Interactions between Oxygen Vacancy and Doped Rare-Earth Elements in Barium Titanate , 2011 .

[27]  C. Liu,et al.  A simple method to synthesize Ba0.6Sr0.4TiO3 nano-powders through high-energy ball-milling , 2011 .

[28]  Xinyong Li,et al.  A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation. , 2011, Journal of colloid and interface science.

[29]  R. Yimnirun,et al.  Microstructure and Electrical Properties of Niobium Doped Barium Titanate Ceramics , 2011 .

[30]  Yang Xiaojing,et al.  Effect of Grain Size of BaTiO3 Ceramics on Dielectric Properties , 2010 .

[31]  C. Xiaolong,et al.  Study of reoxidation in heavily La-doped barium titanate ceramics , 2009 .

[32]  Wei Gao,et al.  Structural and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method , 2008 .

[33]  M. Sebastian,et al.  The effect of glass addition on the dielectric properties of barium strontium titanate , 2008 .

[34]  X. Dong,et al.  Nonhydrolytic sol–gel synthesis and dielectric properties of ultrafine-grained and homogenized Ba0.70Sr0.30TiO3 , 2008 .

[35]  Shenglin Jiang,et al.  Synthesis and characterization of Ba1−xSrxTiO3 nanopowders by citric acid gel method , 2007 .

[36]  T. Tseng,et al.  SrTiO3–SiO2 oxide films for possible high-k gate dielectric applications , 2007 .

[37]  E. Longo,et al.  Separation of dielectric and space charge polarizations in CaCu3Ti4O12∕CaTiO3 composite polycrystalline systems , 2007 .

[38]  D. Sinclair,et al.  Characterization of Ba0.9Sr0.1TiO3 prepared by low temperature chloride aqueous synthesis , 2007 .

[39]  T. Osipowicz,et al.  Improvement of dielectric loss tangent of Al2O3 doped Ba0.5Sr0.5TiO3 thin films for tunable microwave devices , 2003, cond-mat/0305638.

[40]  S. B. Deshpande,et al.  Simple chemical route for the quantitative precipitation of barium–strontium titanyl oxalate precursor leading to Ba1−xSrxTiO3 powders , 2003 .

[41]  S. Phanichphant,et al.  Phase content, tetragonality, and crystallite size of nanoscaled barium titanate synthesized by the catecholate process: effect of calcination temperature , 2003 .

[42]  F. Morrison,et al.  Doping mechanisms and electrical properties of La-doped BaTiO3 ceramics , 2001 .

[43]  M. A. Peña,et al.  Chemical structures and performance of perovskite oxides. , 2001, Chemical reviews.

[44]  M. Shani [Dream or reality]. , 2001, Harefuah.

[45]  T. Okuda,et al.  Occupational sites and dielectric properties of rare-earth and Mn substituted BaTiO3 , 2001 .

[46]  E. A. Payzant,et al.  Homogeneous (co)precipitation of inorganic salts for synthesis of monodispersed barium titanate particles , 2000 .

[47]  M. Hampden‐Smith,et al.  Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors , 1993 .

[48]  D. Sinclair,et al.  Electroceramics: Characterization by Impedance Spectroscopy , 1990 .

[49]  J. Ross Macdonald,et al.  Note on the parameterization of the constant-phase admittance element , 1984 .

[50]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.

[51]  A. West,et al.  A new method for analysing the a.c. behaviour of polycrystalline solid electrolytes , 1975 .

[52]  C. G. Koops On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies , 1951 .

[53]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .