New results on production matrices for geometric graphs

Abstract We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another way of counting the number of such objects. For instance, a formula for the number of connected geometric graphs with given root degree, drawn on a set of n points in convex position in the plane, is presented. Further, we find the characteristic polynomials and we provide a characterization of the eigenvectors of the production matrices.