A study on the applications of the acoustic design sensitivity analysis of vibrating bodies

Abstract The determination of the sensitivity of the acoustical characteristics of vibrating systems with respect to the variation of the design parameters predicting these characteristics is a necessary and important step of the acoustic design and optimization process. Acoustic design sensitivity analysis includes the computation and evaluation of the sensitivity information required for this procedure. In this study, a boundary element code performing the sensitivity analysis of the acoustic pressure by using the matrix sensitivities with respect to different design variables has been developed. The effect of the precision of boundary element discretization on the acoustic pressure sensitivity is examined via this code. The formulation is applied to a multi-source system and the dimension sensitivity analysis of near field pressures of two-dilating-spherical source is performed. The last application is devoted to a real sound source: a washing machine sitting on the floor. Sensitivity of the field pressures to the machine’s dimensions (size), surface velocity and frequency is examined on the bases of the boundary element model of the machine and half-space condition. The impacts of these variables are compared; and a limiting speed for the machine responding both the acoustical and operational requirements is determined.