Combining RBF Networks Trained by Different Clustering Techniques

Clustering techniques have a strong influence on the performance achieved by Radial Basis Function (RBF) networks. This article compares the performance achieved by RBF networks using seven different clustering techniques. For such, different sizes of RBF networks are trained and tested using an Automatic Target Recognition data set. The performances of these RBF networks using each clustering technique are compared and analyzed. This article also evaluates how the performance can be improved by combining RBF networks, training with different clustering techniques, in committees.

[1]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[2]  Amanda J. C. Sharkey,et al.  On Combining Artificial Neural Nets , 1996, Connect. Sci..

[3]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[4]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[5]  Shokri Z. Selim,et al.  K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  C. J.,et al.  On Combining Arti cial Neural , 1996 .

[7]  Man-Wai Mak,et al.  Speaker identification using multilayer perceptrons and radial basis function networks , 1994, Neurocomputing.

[8]  C.H. Sequin,et al.  Optimal adaptive k-means algorithm with dynamic adjustment of learning rate , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[9]  Mohamed A. Ismail,et al.  Multidimensional data clustering utilizing hybrid search strategies , 1989, Pattern Recognit..

[10]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[11]  S. Nonlinear time series modelling and prediction using Gaussian RBF networks with enhanced clustering and RLS learning , 2004 .

[12]  Sargur N. Srihari,et al.  Decision Combination in Multiple Classifier Systems , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  João Gama,et al.  Characterization of Classification Algorithms , 1995, EPIA.

[14]  Soo-Young Lee,et al.  Intelligent judge neural network for speech recognition , 2006, Neural Processing Letters.

[15]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Pattern recognition using constructive algorithms , 1999, IJCNN.

[16]  Ahmad Fuad Rezaur Rahman,et al.  Generalised approach to the recognition of structurally similar handwritten characters using multiple expert classifiers , 1997 .

[17]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[18]  Sheng Chen Nonlinear time series modelling and prediction using Gaussian RBF networks with enhanced clustering and RLS learning , 1995 .

[19]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[20]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[21]  A.C.P.L.F. de Carvalho,et al.  Credit analysis using radial basis function networks , 1999 .

[22]  Prampero,et al.  Classifier combination for vehicle silhouettes recognition , 1999 .

[23]  J. Mark Introduction to radial basis function networks , 1996 .

[24]  Yi Lu,et al.  Knowledge integration in a multiple classifier system , 2004, Applied Intelligence.

[25]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[26]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[27]  Avijit Saha,et al.  Oriented Non-Radial Basis Functions for Image Coding and Analysis , 1990, NIPS.