Wavelet Least Squares Methods for Boundary Value Problems
暂无分享,去创建一个
[1] James H. Bramble,et al. Least Squares Methods for 2mth Order Elliptic Boundary-Value Problems , 1971 .
[2] Angela Kunoth,et al. Wavelet Methods — Elliptic Boundary Value Problems and Control Problems , 2001 .
[3] Wolfgang Dahmen,et al. Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..
[4] Dennis C. Jespersen,et al. A least squares decomposition method for solving elliptic equations , 1977 .
[5] Wolfgang Dahmen,et al. Appending boundary conditions by Lagrange multipliers: Analysis of the LBB condition , 2001, Numerische Mathematik.
[6] W. Dahmen. Stability of Multiscale Transformations. , 1995 .
[7] G. Carey,et al. Least-squares mixed finite elements for second-order elliptic problems , 1994 .
[8] Wolfgang Dahmen,et al. Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution , 1993, Adv. Comput. Math..
[9] Gerhard Starke,et al. Multilevel Boundary Functionals for Least-Squares Mixed Finite Element Methods , 1999 .
[10] Wolfgang Dahmen,et al. Composite wavelet bases for operator equations , 1999, Math. Comput..
[11] T. Manteuffel,et al. First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity , 1997 .
[12] S. Agmon,et al. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .
[13] Stefan Hildebrandt,et al. Constructive proofs of representation theorems in separable Hilbert space , 1964 .
[14] Joseph E. Pasciak,et al. A least-squares approach based on a discrete minus one inner product for first order systems , 1997, Math. Comput..
[15] R. Glowinski,et al. Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .
[16] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[17] M. Gunzburger,et al. Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses , 1992 .
[18] Silvia Bertoluzza,et al. Wavelet stabilization of the Lagrange multiplier method , 2000, Numerische Mathematik.
[19] R. Schneider,et al. Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .
[20] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[21] R. B. Kellogg,et al. Least Squares Methods for Elliptic Systems , 1985 .
[22] Faker Ben Belgacem,et al. The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.
[23] Martin Costabel,et al. Coupling of finite and boundary element methods for an elastoplastic interface problem , 1990 .
[24] Albert Cohen,et al. Wavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity , 1999, SIAM J. Sci. Comput..
[25] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[26] Joseph E. Pasciak,et al. Least-squares for second-order elliptic problems , 1998 .
[27] Wolfgang Dahmen,et al. Stable multiscale bases and local error estimation for elliptic problems , 1997 .
[28] Claudio Canuto,et al. The wavelet element method. Part I: Construction and analysis. , 1997 .
[29] S. Bertoluzza. Stabilization by multiscale decomposition , 1998 .
[30] Pekka Neittaanmäki,et al. On finite element approximation of the gradient for solution of Poisson equation , 1981 .
[31] T. Manteuffel,et al. FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .
[32] W. Dahmen,et al. Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .
[33] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[34] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[35] Wolfgang Dahmen,et al. Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..
[36] Karsten Urban,et al. Towards Object Oriented Software Tools for Numerical Multiscale Methods for PDEs using Wavelets , 1997 .