Wavelet Least Squares Methods for Boundary Value Problems

This paper is concerned with least squares methods for the numerical solution of operator equations. Our primary focus is the discussion of the following conceptual issues: the selection of appropriate least squares functionals, their numerical evaluation in the special light of recent developments of wavelet methods, and a natural way of preconditioning the resulting systems of linear equations. We describe first a general format of variational problems that are well-posed in a certain natural topology. In order to illustrate the scope of these problems we identify several special cases such as second order elliptic boundary value problems, their formulation as a first order system, transmission problems, the system of Stokes equations, or more general saddle point problems. Particular emphasis is placed on the separate treatment of essential nonhomogeneous boundary conditions. We propose a unified treatment based on wavelet expansions. In particular, we exploit the fact that weighted sequence norms of wavelet coefficients are equivalent to relevant function norms arising in the least squares context. This provides access to "difficult" norms, efficient preconditioners and, in the case of first order systems, optimal L2 error estimates.

[1]  James H. Bramble,et al.  Least Squares Methods for 2mth Order Elliptic Boundary-Value Problems , 1971 .

[2]  Angela Kunoth,et al.  Wavelet Methods — Elliptic Boundary Value Problems and Control Problems , 2001 .

[3]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[4]  Dennis C. Jespersen,et al.  A least squares decomposition method for solving elliptic equations , 1977 .

[5]  Wolfgang Dahmen,et al.  Appending boundary conditions by Lagrange multipliers: Analysis of the LBB condition , 2001, Numerische Mathematik.

[6]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[7]  G. Carey,et al.  Least-squares mixed finite elements for second-order elliptic problems , 1994 .

[8]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution , 1993, Adv. Comput. Math..

[9]  Gerhard Starke,et al.  Multilevel Boundary Functionals for Least-Squares Mixed Finite Element Methods , 1999 .

[10]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..

[11]  T. Manteuffel,et al.  First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity , 1997 .

[12]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[13]  Stefan Hildebrandt,et al.  Constructive proofs of representation theorems in separable Hilbert space , 1964 .

[14]  Joseph E. Pasciak,et al.  A least-squares approach based on a discrete minus one inner product for first order systems , 1997, Math. Comput..

[15]  R. Glowinski,et al.  Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .

[16]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[17]  M. Gunzburger,et al.  Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses , 1992 .

[18]  Silvia Bertoluzza,et al.  Wavelet stabilization of the Lagrange multiplier method , 2000, Numerische Mathematik.

[19]  R. Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .

[20]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[21]  R. B. Kellogg,et al.  Least Squares Methods for Elliptic Systems , 1985 .

[22]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[23]  Martin Costabel,et al.  Coupling of finite and boundary element methods for an elastoplastic interface problem , 1990 .

[24]  Albert Cohen,et al.  Wavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity , 1999, SIAM J. Sci. Comput..

[25]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[26]  Joseph E. Pasciak,et al.  Least-squares for second-order elliptic problems , 1998 .

[27]  Wolfgang Dahmen,et al.  Stable multiscale bases and local error estimation for elliptic problems , 1997 .

[28]  Claudio Canuto,et al.  The wavelet element method. Part I: Construction and analysis. , 1997 .

[29]  S. Bertoluzza Stabilization by multiscale decomposition , 1998 .

[30]  Pekka Neittaanmäki,et al.  On finite element approximation of the gradient for solution of Poisson equation , 1981 .

[31]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[32]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[33]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[34]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[35]  Wolfgang Dahmen,et al.  Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..

[36]  Karsten Urban,et al.  Towards Object Oriented Software Tools for Numerical Multiscale Methods for PDEs using Wavelets , 1997 .