Applications of yeast flocculation in biotechnological processes

A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects—the basics of yeast flocculation, the development of “new” flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The construction of flocculating yeast strains includes not only the recombinant constitutive flocculent brewer's yeast, but also recombinant flocculent yeast for lactose metabolisation and ethanol production. Furthermore, recent work on the heterologous β-galactosidase production using a recombinant flocculentSaccharomyces cerevisiae is considered. As bioreactors using flocculating yeast cells have particular properties, mainly associated with a high solid phase hold-up, a section dedicated to its operation is presented. Aspects such as bioreactor productivity and culture stability as well as bioreactor hydrodynamics and mass transfer properties of flocculating cell cultures are considered. Finally, the paper concludes describing some of the applications of high cell density flocculation bioreactors and discussing potential new uses of these systems.

[1]  S. Holmberg Isolation and characterization of a polypeptide absent from non-flocculent mutants of Saccharomyces cerevisiae , 1978 .

[2]  B. Miki,et al.  Repression and induction of flocculation interactions in Saccharomyces cerevisiae , 1982, Journal of bacteriology.

[3]  P. Mill THE NATURE OF THE INTERACTIONS BETWEEN FLOCCULENT CELLS IN THE FLOCCULATION OF SACCHAROMYCES CEREVISIAE. , 1964, Journal of general microbiology.

[4]  António A. Vicente,et al.  Hydrodynamic performance of a three-phase airlift bioreactor with an enlarged degassing zone , 1995 .

[5]  G. Calleja Role of mitochondria in the sex-directed flocculation of a fission yeast. , 1973, Archives of biochemistry and biophysics.

[6]  Campbell W. Robinson,et al.  Application of airlift gas-liquid-solid reactors in biotechnology , 1992 .

[7]  I. Yamashita,et al.  Mating signals control expression of both starch fermentation genes and a novel flocculation gene FLO8 in the yeast Saccharomyces , 1983 .

[8]  A. Wieczorek,et al.  Continuous ethanol production by flocculating yeast in the fluidized bed bioreactor. , 1994, FEMS microbiology reviews.

[9]  M. Stratford Yeast flocculation: Reconciliation of physiological and genetic viewpoints , 1992, Yeast.

[10]  S. Assinder,et al.  Yeast flocculation: Flo1 and NewFlo phenotypes and receptor structure , 1991, Yeast.

[11]  J. Kijne,et al.  A rapid and selective assay for measuring cell surface hydrophobicity of brewer's yeast cells , 1996, Yeast.

[12]  S. Weir,et al.  The strength of yeast flocs produced by the cationic flocculant chitosan: Effect of suspension medium and of pretreatment with anionic polyelectrolytes , 1994 .

[13]  B. Miki,et al.  Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae , 1982, Journal of bacteriology.

[14]  T. Shinohara,et al.  Introduction of flocculation property into wine yeasts (Saccharomyces cerevisiae) by hybridization , 1997 .

[15]  I. Yamashita,et al.  Genetic Background of Glucoamylase Production in the Yeast Saccharomyces , 1984 .

[16]  C. A. Masschelein HORACE BROWN MEMORIAL LECTURE A REALISTIC VIEW ON THE ROLE OF RESEARCH IN THE BREWING INDUSTRY TODAY , 1997 .

[17]  M. A. Tung,et al.  BIOCHEMICAL ASPECTS OF YEAST FLOCCULATION AND ITS MEASUREMENT: A REVIEW , 1992 .

[18]  J. Watari,et al.  Construction of Flocculent Yeast Cells (Saccharomyces cerevisiae) by Mating or Protoplast Fusion Using a Yeast Cell Containing the Flocculation Gene FL05 , 1990 .

[19]  C. Masy,et al.  Flocculation of Saccharomyces cerevisiae: inhibition by sugars. , 1992, Canadian journal of microbiology.

[20]  K. Kida,et al.  Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion , 1992 .

[21]  Sabine E. Apitz,et al.  Hydrodynamics and mass transfer prediction in a three-phase airlift reactor for marine sediment biotreatment , 1999 .

[22]  G. Stewart,et al.  The identification, characterization, and mapping of a gene for flocculation in Saccharomyces sp. , 1977, Canadian journal of microbiology.

[23]  A. Teunissen,et al.  Localization of the dominant flocculation genes FLO5 and FLO8 of Saccharomyces cerevisiae , 1995, Yeast.

[24]  José A. Teixeira,et al.  Experimental assessment of internal diffusion limitations in yeast flocs , 1990 .

[25]  Graham G. Stewart,et al.  COLLOIDAL ASPECTS OF YEAST FLOCCULATION: A REVIEW , 1992 .

[26]  A. Eddy COMPOSITE NATURE OF THE FLOCCULATION PROCESS OF TOP AND BOTTOM STRAINS OF SACCHAROMYCES , 1958 .

[27]  C. Robertson,et al.  The effective diffusive permeability of a nonreacting solute in microbial cell aggregates , 1988, Biotechnology and bioengineering.

[28]  W. Lo,et al.  The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. , 1998, Molecular biology of the cell.

[29]  C. Ghommidh,et al.  Influence of medium composition on surface properties and aggregation of a Saccharomyces cerevisiae strain , 1994 .

[30]  S. Umesh-Kumar,et al.  Antigenic studies on flocculating brewer's yeast, Saccharomyces cerevisiae NCYC 227 , 1990 .

[31]  R. Bonaly,et al.  Caractérisation des constituants pariétaux impliqués dans la floculation de levures Saccharomyces uvarum , 1981 .

[32]  C. Abate,et al.  Ethanol production by a mixed culture of flocculent strains of Zymomonas mobilis and Saccharomyces sp. , 1996, Applied Microbiology and Biotechnology.

[33]  C. Rodrigues-Pousada,et al.  Constitutive Flocculation in Saccharomyces cerevisiae Through Overexpression of the GTS1 Gene, coding for a ‘Glo’‐type Zn‐finger‐containing Protein , 1997, Yeast.

[34]  J. Cansado,et al.  Genetic evidence of a new flocculation suppressor gene in Saccharomyces cerevisiae. , 1993, FEMS Microbiology Letters.

[35]  K. Smart,et al.  The importance of surface charge and hydrophobicity for the flocculation of chain-forming brewing yeast strains and resistance of these parameters to acid washing. , 1995, FEMS microbiology letters.

[36]  J. Teixeira,et al.  Hydrodynamic studies in an airlift reactor with an enlarged degassing zone , 1998 .

[37]  H. Shimoi,et al.  Flocculation Mechanism of Hansenula anomala J224 , 1990 .

[38]  G. Stewart,et al.  EFFECT OF SOME MONOVALENT AND DIVALENT METAL IONS ON THE FLOCCULATION OF BREWERS YEAST STRAINS , 1976 .

[39]  Juan M. Lema,et al.  Hydraulic model of a gas-lift bioreactor with flocculating yeast , 1995 .

[40]  D. Berry,et al.  Discrimination by heat and proteinase treatments between flocculent phenotypes conferred on Saccharomyces cerevisiae by the genes FLO1 and FLO5. , 1985, Journal of general microbiology.

[41]  A. Teunissen,et al.  The dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family , 1995, Yeast.

[42]  G. Smit,et al.  Flocculence of Saccharomyces cerevisiae cells is induced by nutrient limitation, with cell surface hydrophobicity as a major determinant , 1992, Applied and environmental microbiology.

[43]  M. Barney,et al.  Use of Genetic Transformation for the Introduction of Flocculence into Yeast , 1980 .

[44]  A. H. Rose Physiology of Cell Aggregation: Flocculation by Saccharomyces cerevisiae As a Model System , 1984 .

[45]  I. A. Webster Criteria for the prediction of diffusional control within whole cells and cell flocs: Prediction of diffusional control , 1981 .

[46]  J. Teixeira,et al.  A new technique for measuring kinetic and mass transfer parameters in flocs of Saccharomyces cerevisiae , 1997 .

[47]  P. Fernandes,et al.  Yeast flocculation—the role of cell wall proteins , 1994 .

[48]  Jeffrey F. Fehring,et al.  Immobilized Yeast Bioreactor Systems for Continuous Beer Fermentation , 1999, Biotechnology progress.

[49]  M. A. Tung,et al.  PHYSICAL PROPERTIES OF COMMERCIAL BREWING YEAST SUSPENSIONS , 1993 .

[50]  L. Domingues,et al.  Construction of a flocculent Saccharomyces cerevisiae fermenting lactose , 1999, Applied Microbiology and Biotechnology.

[51]  K. Kida,et al.  The effect of aeration on stability of continuous ethanol fermentation by a flocculating yeast. , 1989 .

[52]  W. L. Orton,et al.  ROMATIC COMPOUNDS AND SUGARS IN FLOCCULATION OF SACCHAROMYCES CEREVISIAE , 1978 .

[53]  M. Kennard,et al.  Two‐ and three‐phase mixing in a concentric draft tube gas‐lift fermentor , 1991, Biotechnology and bioengineering.

[54]  I. S. Pretorius,et al.  Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[55]  L. Domingues,et al.  Continuous ethanol fermentation of lactose by a recombinant flocculating Saccharomyces cerevisiae strain. , 1999, Biotechnology and bioengineering.

[56]  J. Teixeira,et al.  Cell wall surface properties and flocculence of a Kluyveromyces marxianus strain , 1995 .

[57]  G. Stewart,et al.  REVISED NOMENCLATURE OF GENES THAT CONTROL YEAST FLOCCULATION , 1980 .

[58]  G. H. Rank,et al.  Yeast cell wall, membrane, and soluble marker polypeptides identified by comparative two-dimensional electrophoresis. , 1980, Canadian journal of biochemistry.

[59]  G. Smit,et al.  Isolation and partial purification of mannose‐specific agglutinin from brewer's yeast involved in flocculation , 1994, Yeast.

[60]  D. Karamanev,et al.  Hydrodynamic and mass transfer study of a gas-liquid-solid draft tube spouted bed bioreactor , 1992 .

[61]  M. Ogawa,et al.  Molecular cloning of a flocculation gene in Saccharomyces cerevisiae , 1989 .

[62]  M. Stratford Yeast flocculation: Receptor definition by mnn mutants and concanavalin A , 1992, Yeast.

[63]  H. Y. Steensma,et al.  Sequence of the open reading frame of the FL01 gene from Saccharomyces cerevisiae , 1993, Yeast.

[64]  Jianfeng Xu,et al.  Kinetic and technical studies on large-scale culture of Rhodiola sachalinensis compact callus aggregates with air-lift reactors , 1998 .

[65]  C. Lewis,et al.  THE GENETICS OF YEAST FLOCCULATION , 1976 .

[66]  H. Nishihara,et al.  Studies on yeast flocculation. Part V. Essential roles of cell surface protein and carbohydrate components in flocculation of a brewer's yeast. , 1987 .

[67]  J. S. Hough,et al.  FLOCCULATION OF BREWER'S YEAST , 1970 .

[68]  W. L. Orton,et al.  EFFECT OF ALKALINE‐EARTH METAL SALTS ON FLOCCULENCE IN SACCHAROMYCES CEREVISIAE , 1973 .

[69]  M. Stratford,et al.  Yeast flocculation: a new perspective. , 1992, Advances in microbial physiology.

[70]  H. Sivaraman,et al.  A mannose‐binding protein from the cell surface of flocculent Saccharomyces cerevisiae (NCIM 3528): its role in flocculation , 2000, Yeast.

[71]  F. Ferreira-da-Silva,et al.  Flocculation of Saccharomyces cerevisiae is induced by transformation with the GAP1 gene from Kluyveromyces marxianus , 2000, Yeast.

[72]  P. Barré,et al.  Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p , 1997, Journal of bacteriology.

[73]  J. Findlay,et al.  A protein homologous to glyceraldehyde-3-phosphate dehydrogenase is induced in the cell wall of a flocculent Kluyveromyces marxianus. , 1992, Biochimica et biophysica acta.

[74]  G. Stewart,et al.  Bacterial-induced flocculation in selected brewing strains of Saccharomyces , 1993 .

[75]  G. Stewart,et al.  SOME CONSIDERATIONS OF THE FLOCCULATION CHARACTERISTICS OF ALE AND LAGER YEAST STRAINS , 1975 .

[76]  L. Domingues,et al.  Transformation of a flocculating Saccharomyces cerevisiae using lithium acetate and pYAC4 , 1999, Journal of basic microbiology.

[77]  E. Ferreira,et al.  Mass transfer properties of glucose and O2 in Saccharomyces cerevisiae flocs , 1998 .

[78]  B. Pucci,et al.  Comparative extraction procedures for a galactose-specific lectin involved in flocculation of Kluyveromyces lactis strains , 1998, Applied Microbiology and Biotechnology.

[79]  A. Vicente,et al.  Modelling diffusion-reaction phenomena in yeast flocs of Saccharomyces cerevisiae , 1998 .

[80]  António A. Vicente,et al.  Increase of ethanol productivity in an airlift reactor with a modified draught tube , 1999 .

[81]  J. Tramper,et al.  Hydrodynamics, axial dispersion and gas-liquid oxygen transfer in an airlift-loop bioreactor with three-phase flow. , 1987 .

[82]  R. Kuroki,et al.  Region of Flo1 Proteins Responsible for Sugar Recognition , 1998, Journal of bacteriology.

[83]  J. Teixeira,et al.  Sizing and counting of saccharomyces cerevisiae floc populations by image analysis, using an automatically calculated threshold. , 2010, Biotechnology and bioengineering.

[84]  S. Colin,et al.  Kluyveromyces bulgaricus yeast lectins. Isolation of two galactose-specific lectin forms from the yeast cell wall. , 1991, The Journal of biological chemistry.

[85]  N. Lima,et al.  Enhancement of metabolic rates of yeast flocculent cells through the use of polymeric additives , 1992 .

[86]  V. Loppinet,et al.  Structure of the phosphopeptidomannans from flocculent and non-flocculent yeast Kluyveromyces lactis. , 1996, Carbohydrate research.

[87]  M. Stratford Yeast flocculation: Calcium specificity , 1989 .

[88]  M. Stratford,et al.  Yeast flocculation: Cationic inhibition , 1990 .

[89]  Cedric Briens,et al.  NEW DEVELOPMENTS IN THE BREWING INDUSTRY USING IMMOBILISED YEAST CELL BIOREACTOR SYSTEMS , 1997 .

[90]  P. Rouxhet,et al.  Flocculence of Brewery Yeasts and Their Surface-properties - Chemical-composition, Electrostatic Charge and Hydrophobicity , 1988 .

[91]  L. Domingues,et al.  Contamination of a high-cell-density continuous bioreactor. , 2000, Biotechnology and bioengineering.

[92]  G. Smit,et al.  Cause and control of flocculation in yeast. , 1993, Trends in biotechnology.

[93]  T. G. Villa,et al.  Cloning of a new FLO gene from the flocculating Saccharomyces cerevisiae IM1-8b strain. , 1997, FEMS microbiology letters.

[94]  G. Fink,et al.  Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. , 1996, Genetics.

[95]  O. Kobayashi,et al.  Molecular cloning and analysis of the dominant flocculation gene FLO8 from Saccharomyces cerevisiae. , 1996, Molecular & general genetics : MGG.

[96]  J. Teixeira,et al.  Influence of operational parameters on the start-up of a flocculation airlift bioreactor , 1994 .

[97]  M. Penttilä,et al.  Molecular cloning and analysis of the yeast flocculation gene FLO1 , 1994, Yeast.

[98]  G. Smit,et al.  Determinants of flocculence of brewer's yeast during fermentation in wort , 1993, Yeast.

[99]  Reader Hp Genetic analysis of flocculation in Saccharomyces cerevisiae. , 1980 .

[100]  J. A. Teixeira,et al.  Comparative analysis of ethanolic fermentation in two continuous flocculation bioreactors and effect of flocculation additive , 1994 .

[101]  A. Bentham,et al.  The mechanism of flocculation of a Saccharomyces cerevisiae cell homogenate using polyethyleneimine , 1996 .

[102]  C. Masy,et al.  Yeast flocculation: competition between nonspecific repulsion and specific bonding in cell adhesion. , 1988, Canadian journal of microbiology.

[103]  J. Hammond Genetically‐modified brewing yeasts for the 21st century. Progress to date , 1995, Yeast.

[104]  M. Sousa,et al.  Flocculation of Kluyveromyces marxianus is induced by a temperature upshift , 1993, Yeast.

[105]  M. Stratford,et al.  Yeast flocculation: Quantification , 1988, Yeast.

[106]  J. Merchuk,et al.  Concentric-tube airlift reactors: effects of geometrical design on performance. , 1994 .

[107]  J. Teixeira,et al.  Effect of liquid-phase surface tension on hydrodynamics of a three-phase airlift reactor with an enlarged degassing zone , 1998 .

[108]  D. R. Skidmore,et al.  Mass transfer phenomena in an airlift reactor: Effects of solids loading and temperature , 1990, Biotechnology and bioengineering.

[109]  J. A. Teixeira,et al.  Construction of a flocculent brewer's yeast strain secreting Aspergillus nigerβ-galactosidase , 2000, Applied Microbiology and Biotechnology.

[110]  H. P. Coleman,et al.  Yeast flocculaiton: A dynamic equilibrium , 1988 .

[111]  W. Lo,et al.  FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin , 1996, Journal of bacteriology.

[112]  G. Goma,et al.  Continuous ethanol production by a flocculating strain of Kluyveromyces marxianus: bioreactor performance , 1990 .

[113]  H. Kuriyama,et al.  Role of cations in the flocculation of Saccharomyces cerevisiae and discrimination of the corresponding proteins. , 1991, Canadian journal of microbiology.

[114]  P. Barré,et al.  Distribution of the flocculation protein, Flop, at the cell surface during yeast growth: The availability of Flop determines the flocculation level , 1998, Yeast.

[115]  Y. Chisti,et al.  Hydrodynamic behaviour of animal cell microcarrier suspensions in split-cylinder airlift bioreactors , 1995 .

[116]  Chun-Min Chang,et al.  Liquid velocity and gas holdup in three-phase internal loop airlift reactors with low-density particles , 1995 .

[117]  R. C. Dickson,et al.  Construction of strains of Saccharomyces cerevisiae that grow on lactose. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[118]  E. Šturdı́k,et al.  Reactors for continuous primary beer fermentation using immobilised yeast , 1997 .

[119]  J. Teixeira,et al.  Introduction of flocculation into industrial yeast, Saccharomyces cerevisiae saké, by protoplast fusion. , 1995, Microbios.

[120]  S. Keränen,et al.  CONSTRUCTION OF FLOCCULENT BREWER'S YEAST BY CHROMOSOMAL INTEGRATION OF THE YEAST FLOCCULATION GENE FLO1 , 1994 .

[121]  I. Ananta,et al.  Oxygen transfer and culture characteristics of self‐immobilized Solanum aviculare aggregates , 1995, Biotechnology and bioengineering.