ℤ4-Double Cyclic Codes Are Asymptotically Good

We construct a class of <inline-formula> <tex-math notation="LaTeX">$\mathbb {Z}_{4}$ </tex-math></inline-formula>-double cyclic codes generated by pairs of polynomials. Based on the probabilistic method, we prove the asymptotic properties of this class of codes: for any positive real number <inline-formula> <tex-math notation="LaTeX">$0< \delta < 1$ </tex-math></inline-formula> such that the 4-ary entropy at <inline-formula> <tex-math notation="LaTeX">$\frac {k+l}{2}\delta $ </tex-math></inline-formula> is less than <inline-formula> <tex-math notation="LaTeX">$\frac {1}{4}$ </tex-math></inline-formula>, the rate of the random code is convergent to <inline-formula> <tex-math notation="LaTeX">$\frac {1}{k+l}$ </tex-math></inline-formula> and the relative distance of the code is convergent to <inline-formula> <tex-math notation="LaTeX">$\delta $ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$l$ </tex-math></inline-formula> are pairwise coprime positive odd integers. As a result, the <inline-formula> <tex-math notation="LaTeX">$\mathbb {Z}_{4}$ </tex-math></inline-formula>-double cyclic codes are asymptotically good.

[1]  Joaquim Borges,et al.  $${{\mathbb {Z}}}_2$$Z2-double cyclic codes , 2018, Des. Codes Cryptogr..

[2]  Yun Fan,et al.  Thresholds of Random Quasi-Abelian Codes , 2013, IEEE Transactions on Information Theory.

[3]  Lin Sok,et al.  Double circulant LCD codes over Z4 , 2019, Finite Fields Their Appl..

[4]  Sanjoy K. Mitter,et al.  Some randomized code constructions from group actions , 2006, IEEE Transactions on Information Theory.

[5]  Shixin Zhu,et al.  Asymptotically good ZprZps-additive cyclic codes , 2020, Finite Fields Their Appl..

[6]  Minjia Shi,et al.  On double cyclic codes over Z4 , 2016, Finite Fields Their Appl..

[7]  Sanjay Kumar Singh,et al.  Weight distribution of a subclass of Z2-double cyclic codes , 2019, Finite Fields Their Appl..

[8]  Patrick Solé,et al.  Asymptotically Good Additive Cyclic Codes Exist , 2018, IEEE Communications Letters.

[9]  Wolfgang Willems,et al.  Is the class of cyclic codes asymptotically good? , 2006, IEEE Transactions on Information Theory.

[10]  AbualrubT.,et al.  On the generators of Z4 cyclic codes of length 2e , 2006 .

[11]  Zhe-Xian X. Wan,et al.  Quaternary Codes , 1997 .

[12]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[13]  Ali Ghrayeb,et al.  A mass formula and rank of /spl Zopf//sub 4/ cyclic codes of length 2/sup e/ , 2004, IEEE Transactions on Information Theory.

[14]  Vera Pless,et al.  Cyclic codes and quadratic residue codes over Z4 , 1996, IEEE Trans. Inf. Theory.

[15]  Xiwang Cao,et al.  Asymptotically good quasi-cyclic codes of fractional index , 2018, Discret. Math..