Wood species automatic identification from wood core images with a residual convolutional neural network

[1]  D. Marguerie,et al.  Charcoal analysis and dendrology: data from archaeological sites in north-western France , 2007 .

[2]  Dendrochronological Dating of Icons from the Museum of the Folk Building in Sanok , 2007 .

[3]  K. Turhan,et al.  Support vector machines in wood identification: the case of three Salix species from Turkey , 2013 .

[4]  Rubiyah Yusof,et al.  Statistical feature extraction method for wood species recognition system , 2017, European Journal of Wood and Wood Products.

[6]  Yafeng Zhao,et al.  Deep learning for use in lumber classification tasks , 2019, Wood Science and Technology.

[7]  Luiz Eduardo Soares de Oliveira,et al.  Forest Species Recognition Using Color-Based Features , 2010, 2010 20th International Conference on Pattern Recognition.

[8]  Peter Gasson,et al.  IAWA list of microscopic features for softwood identification , 2004 .

[9]  Rubiyah Yusof,et al.  Tree species classification based on image analysis using Improved-Basic Gray Level Aura Matrix , 2016, Comput. Electron. Agric..

[10]  Nikolaos Grammalidis,et al.  Wood species recognition through multidimensional texture analysis , 2018, Comput. Electron. Agric..

[11]  Odemir Martinez Bruno,et al.  Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors , 2019, ICIAP.

[12]  Luiz Eduardo Soares de Oliveira,et al.  A database for automatic classification of forest species , 2012, Machine Vision and Applications.

[13]  Alex C. Wiedenhoeft,et al.  Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks , 2018, Plant Methods.

[14]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[15]  Marzuki Khalid,et al.  Using Two Stage Classification for Improved Tropical Wood Species Recognition System , 2011 .

[16]  Hans Beeckman,et al.  Automated classification of wood transverse cross-section micro-imagery from 77 commercial Central-African timber species , 2017, Annals of Forest Science.

[17]  Kayoko Kobayashi,et al.  Texture analysis of stereograms of diffuse-porous hardwood: identification of wood species used in Tripitaka Koreana , 2017, Journal of Wood Science.

[18]  Peter Gasson,et al.  IAWA list of microscopic features for hardwood identification : with an appendix on non-anatomical information , 1989 .

[19]  Marzuki Khalid,et al.  DESIGN OF AN INTELLIGENT WOOD SPECIES RECOGNITION SYSTEM , 2008 .

[20]  Luiz Eduardo Soares de Oliveira,et al.  Forest species recognition using macroscopic images , 2014, Machine Vision and Applications.

[21]  Peng Zhao,et al.  Wood species identification using feature-level fusion scheme , 2014 .

[22]  F. Verbeek,et al.  Computer-assisted timber identification based on features extracted from microscopic wood sections , 2020, IAWA Journal.

[23]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[24]  Rubiyah Yusof,et al.  Tropical Wood Species Recognition System Based on Gabor Filter as Image Multiplier , 2013, 2013 International Conference on Signal-Image Technology & Internet-Based Systems.

[25]  Luiz Eduardo Soares de Oliveira,et al.  Forest Species Recognition Using Deep Convolutional Neural Networks , 2014, 2014 22nd International Conference on Pattern Recognition.

[26]  Arvind R. Yadav,et al.  Hardwood species classification with DWT based hybrid texture feature extraction techniques , 2015 .

[27]  H. Falcon-Lang,et al.  Cretaceous forest composition and productivity inferred from a global fossil wood database , 2012 .