A Robust One-Class Classification Model with Interval-Valued Data Based on Belief Functions and Minimax Strategy

A robust model for solving the one-class classification problem by interval-valued training data is proposed in the paper. It is based on using Dempster-Shafer theory for getting the lower and upper risk measures. The minimax or pessimistic strategy is applied to state an optimization problem in the framework of the modified support vector machine (SVM). The algorithm for computing optimal parameters of the classification function stems from extreme points of the convex polytope produced by the interval-valued elements of a training set. It is shown that the hard non-linear optimization problem is reduced to a finite number of standard SVMs.

[1]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[2]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[3]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[4]  Ronald Fagin,et al.  Two Views of Belief: Belief as Generalized Probability and Belief as Evidence , 1992, Artif. Intell..

[5]  Sameer Singh,et al.  Novelty detection: a review - part 1: statistical approaches , 2003, Signal Process..

[6]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[7]  Thomas M. Strat,et al.  Decision analysis using belief functions , 1990, Int. J. Approx. Reason..

[8]  Lev V. Utkin,et al.  Imprecise prior knowledge incorporating into one-class classification , 2013, Knowledge and Information Systems.

[9]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[10]  J. Kacprzyk,et al.  Advances in the Dempster-Shafer theory of evidence , 1994 .

[11]  Jacek M. Zurada,et al.  A Class of Single-Class Minimax Probability Machines for Novelty Detection , 2007, IEEE Transactions on Neural Networks.

[12]  Hung T. Nguyen,et al.  On decision making using belief functions , 1994 .

[13]  Bernhard Schölkopf,et al.  Support Vector Method for Novelty Detection , 1999, NIPS.

[14]  Shehroz S. Khan,et al.  A Survey of Recent Trends in One Class Classification , 2009, AICS.

[15]  Anna Bartkowiak,et al.  Anomaly, novelty, one-class classification: A short introduction , 2010, 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM).

[16]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[17]  Scott Ferson,et al.  Constructing Probability Boxes and Dempster-Shafer Structures , 2003 .

[18]  Mário A. T. Figueiredo,et al.  Soft clustering using weighted one-class support vector machines , 2009, Pattern Recognit..

[19]  Johan A. K. Suykens,et al.  Handling missing values in support vector machine classifiers , 2005, Neural Networks.

[20]  Davide Anguita,et al.  Support vector machines for interval discriminant analysis , 2008, Neurocomputing.

[21]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[22]  Pei-Yi Hao,et al.  Interval regression analysis using support vector networks , 2009, Fuzzy Sets Syst..

[23]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[24]  Jie Wang,et al.  Gaussian kernel optimization for pattern classification , 2009, Pattern Recognit..

[25]  Vladimir Cherkassky,et al.  Learning from Data: Concepts, Theory, and Methods , 1998 .

[26]  Philippe Nivlet,et al.  Interval Discriminant Analysis: An Efficient Method to Integrate Errors In Supervised Pattern Recognition , 2001, ISIPTA.

[27]  Conor Ryan,et al.  Artificial Intelligence and Cognitive Science , 2002, Lecture Notes in Computer Science.

[28]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[29]  Elmar Kriegler,et al.  Utilizing belief functions for the estimation of future climate change , 2005, Int. J. Approx. Reason..

[30]  Lev V. Utkin,et al.  A framework for imprecise robust one-class classification models , 2014, Int. J. Mach. Learn. Cybern..

[31]  Paula Brito,et al.  Linear discriminant analysis for interval data , 2006, Comput. Stat..

[32]  Lev V. Utkin,et al.  Robust novelty detection in the framework of a contamination neighbourhood , 2013, Int. J. Intell. Inf. Database Syst..

[33]  Hisao Ishibuchi,et al.  DISCRIMINANT ANALYSIS OF MULTI-DIMENSIONAL INTERVAL DATA AND ITS APPLICATION TO CHEMICAL SENSING , 1990 .

[34]  Robert P. W. Duin,et al.  Support Vector Data Description , 2004, Machine Learning.

[35]  Colin Campbell,et al.  A Linear Programming Approach to Novelty Detection , 2000, NIPS.

[36]  Francisco de A. T. de Carvalho,et al.  Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..

[37]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[38]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[39]  Colin Campbell,et al.  Kernel methods: a survey of current techniques , 2002, Neurocomputing.