The Carlitz rank of permutations of finite fields: A survey

L. Carlitz proved that any permutation polynomial f of a finite field F"q is a composition of linear polynomials and the monomials x^q^-^2. This result motivated the study of Carlitz rank of f, which is defined in 2009 to be the minimum number of inversions x^q^-^2, needed to obtain f, by E. Aksoy et al. We give a survey of results obtained so far on natural questions related to this concept and indicate a variety of applications, which emerged recently.

[1]  Florian Pausinger,et al.  A good permutation for one-dimensional diaphony , 2010, Monte Carlo Methods Appl..

[2]  Wun-Seng Chou The Period Lengths of Inversive Pseudorandom Vector Generations , 1995 .

[3]  Igor E. Shparlinski,et al.  On the Distribution and Lattice Structure of Nonlinear Congruential Pseudorandom Numbers , 1999 .

[4]  Cunsheng Ding,et al.  On Almost Perfect Nonlinear Permutations , 1994, EUROCRYPT.

[5]  H. Faure,et al.  Discrépance et diaphonie en dimension un , 1993 .

[6]  Igor E. Shparlinski,et al.  On the Multidimensional Distribution of Inversive Congruential Pseudorandom Numbers in Parts of the Period , 2000 .

[7]  Robert F. Tichy,et al.  Sequences, Discrepancies and Applications , 1997 .

[8]  Henri Faure IRREGULARITIES OF DISTRIBUTION OF DIGITAL (0,1)-SEQUENCES IN PRIME BASE , 2005 .

[9]  Kaisa Nyberg,et al.  Differentially Uniform Mappings for Cryptography , 1994, EUROCRYPT.

[10]  Henri Faure Discrepancy and diaphony of digital (0,1)-sequences in prime base , 2005 .

[11]  Shair Ahmad,et al.  Cycle structure of automorphisms of finite cyclic groups , 1969 .

[12]  Pinaki Das,et al.  The Number of Permutation Polynomials of a Given Degree Over a Finite Field , 2002 .

[13]  Igor E. Shparlinski,et al.  Cryptographic applications of analytic number theory - complexity lower bounds and pseudorandomness , 2003, Progress in computer science and applied logic.

[14]  Henri Faure Discrépances de suites associées à un système de numération (en dimension un) , 1981 .

[15]  Igor E. Shparlinski,et al.  On the linear and nonlinear complexity profile of nonlinear pseudorandom number generators , 2003, IEEE Trans. Inf. Theory.

[16]  Wang Daqing,et al.  Permutation polynomials over finite fields , 1987 .

[17]  Igor E. Shparlinski,et al.  On the Distribution of Pseudorandom Numbers and Vectors Generated by Inversive Methods , 2000, Applicable Algebra in Engineering, Communication and Computing.

[18]  Igor E. Shparlinski,et al.  Dynamical Systems Generated by Rational Functions , 2003, AAECC.

[19]  L. Carlitz Permutations in a finite field , 1953 .

[20]  Igor E. Shparlinski Finite Fields: Theory and Computation: The Meeting Point of Number Theory, Computer Science, Coding Theory and Cryptography , 1999 .

[21]  Igor E. Shparlinski,et al.  Predicting the Inversive Generator , 2003, IMACC.

[22]  Domingo Gómez-Pérez,et al.  Attacking the Pollard Generator , 2006, IEEE Transactions on Information Theory.

[23]  Hugo Krawczyk How to Predict Congruential Generators , 1992, J. Algorithms.

[24]  Gary L. Mullen,et al.  Cycle structure of dickson permutation polynomials , 1991 .

[25]  W. Schmidt On irregularities of distribution vii , 1972 .

[26]  Jing Sun,et al.  Interleavers for turbo codes using permutation polynomials over integer rings , 2005, IEEE Transactions on Information Theory.

[27]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[28]  Francesco Pappalardi,et al.  Enumerating permutation polynomials over finite fields by degree II , 2001, Finite Fields Their Appl..

[29]  Brett Stevens,et al.  Two New Measures for Permutations: Ambiguity and Deficiency , 2011, IEEE Transactions on Information Theory.

[30]  Wilfried Meidl,et al.  Permutations of finite fields with prescribed properties , 2014, J. Comput. Appl. Math..

[31]  Wilfried Meidl,et al.  Enumeration of a class of sequences generated by inversions , 2008 .

[32]  Igor E. Shparlinski,et al.  On the cycle structure of repeated exponentiation modulo a prime , 2004 .

[33]  Igor E. Shparlinski,et al.  Predicting nonlinear pseudorandom number generators , 2004, Math. Comput..

[34]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[35]  Carl Bracken,et al.  A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree , 2009, Finite Fields Their Appl..

[36]  Mitsuru Matsui,et al.  Linear Cryptanalysis Method for DES Cipher , 1994, EUROCRYPT.

[37]  Florian Pausinger Weak multipliers for generalized van der Corput sequences , 2012 .

[38]  Igor E. Shparlinski,et al.  On the distribution of inversive congruential pseudorandom numbers in parts of the period , 2001, Math. Comput..

[39]  Wilfried Meidl,et al.  On the Carlitz rank of permutation polynomials , 2009, Finite Fields Their Appl..

[40]  Alina Ostafe,et al.  On the Carlitz rank of permutations of Fq and pseudorandom sequences , 2014, J. Complex..

[41]  Stephen B. Wicker,et al.  Turbo Coding , 1998 .

[42]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[43]  Rudolf Lide,et al.  Finite fields , 1983 .

[44]  Arne Winterhof,et al.  Recent Results on Recursive Nonlinear Pseudorandom Number Generators - (Invited Paper) , 2010, SETA.

[45]  Wilfried Meidl,et al.  On the cycle structure of permutation polynomials , 2008, Finite Fields Their Appl..

[46]  H. Faure Good permutations for extreme discrepancy , 1992 .