The Carlitz rank of permutations of finite fields: A survey
暂无分享,去创建一个
[1] Florian Pausinger,et al. A good permutation for one-dimensional diaphony , 2010, Monte Carlo Methods Appl..
[2] Wun-Seng Chou. The Period Lengths of Inversive Pseudorandom Vector Generations , 1995 .
[3] Igor E. Shparlinski,et al. On the Distribution and Lattice Structure of Nonlinear Congruential Pseudorandom Numbers , 1999 .
[4] Cunsheng Ding,et al. On Almost Perfect Nonlinear Permutations , 1994, EUROCRYPT.
[5] H. Faure,et al. Discrépance et diaphonie en dimension un , 1993 .
[6] Igor E. Shparlinski,et al. On the Multidimensional Distribution of Inversive Congruential Pseudorandom Numbers in Parts of the Period , 2000 .
[7] Robert F. Tichy,et al. Sequences, Discrepancies and Applications , 1997 .
[8] Henri Faure. IRREGULARITIES OF DISTRIBUTION OF DIGITAL (0,1)-SEQUENCES IN PRIME BASE , 2005 .
[9] Kaisa Nyberg,et al. Differentially Uniform Mappings for Cryptography , 1994, EUROCRYPT.
[10] Henri Faure. Discrepancy and diaphony of digital (0,1)-sequences in prime base , 2005 .
[11] Shair Ahmad,et al. Cycle structure of automorphisms of finite cyclic groups , 1969 .
[12] Pinaki Das,et al. The Number of Permutation Polynomials of a Given Degree Over a Finite Field , 2002 .
[13] Igor E. Shparlinski,et al. Cryptographic applications of analytic number theory - complexity lower bounds and pseudorandomness , 2003, Progress in computer science and applied logic.
[14] Henri Faure. Discrépances de suites associées à un système de numération (en dimension un) , 1981 .
[15] Igor E. Shparlinski,et al. On the linear and nonlinear complexity profile of nonlinear pseudorandom number generators , 2003, IEEE Trans. Inf. Theory.
[16] Wang Daqing,et al. Permutation polynomials over finite fields , 1987 .
[17] Igor E. Shparlinski,et al. On the Distribution of Pseudorandom Numbers and Vectors Generated by Inversive Methods , 2000, Applicable Algebra in Engineering, Communication and Computing.
[18] Igor E. Shparlinski,et al. Dynamical Systems Generated by Rational Functions , 2003, AAECC.
[19] L. Carlitz. Permutations in a finite field , 1953 .
[20] Igor E. Shparlinski. Finite Fields: Theory and Computation: The Meeting Point of Number Theory, Computer Science, Coding Theory and Cryptography , 1999 .
[21] Igor E. Shparlinski,et al. Predicting the Inversive Generator , 2003, IMACC.
[22] Domingo Gómez-Pérez,et al. Attacking the Pollard Generator , 2006, IEEE Transactions on Information Theory.
[23] Hugo Krawczyk. How to Predict Congruential Generators , 1992, J. Algorithms.
[24] Gary L. Mullen,et al. Cycle structure of dickson permutation polynomials , 1991 .
[25] W. Schmidt. On irregularities of distribution vii , 1972 .
[26] Jing Sun,et al. Interleavers for turbo codes using permutation polynomials over integer rings , 2005, IEEE Transactions on Information Theory.
[27] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[28] Francesco Pappalardi,et al. Enumerating permutation polynomials over finite fields by degree II , 2001, Finite Fields Their Appl..
[29] Brett Stevens,et al. Two New Measures for Permutations: Ambiguity and Deficiency , 2011, IEEE Transactions on Information Theory.
[30] Wilfried Meidl,et al. Permutations of finite fields with prescribed properties , 2014, J. Comput. Appl. Math..
[31] Wilfried Meidl,et al. Enumeration of a class of sequences generated by inversions , 2008 .
[32] Igor E. Shparlinski,et al. On the cycle structure of repeated exponentiation modulo a prime , 2004 .
[33] Igor E. Shparlinski,et al. Predicting nonlinear pseudorandom number generators , 2004, Math. Comput..
[34] L. Comtet,et al. Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .
[35] Carl Bracken,et al. A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree , 2009, Finite Fields Their Appl..
[36] Mitsuru Matsui,et al. Linear Cryptanalysis Method for DES Cipher , 1994, EUROCRYPT.
[37] Florian Pausinger. Weak multipliers for generalized van der Corput sequences , 2012 .
[38] Igor E. Shparlinski,et al. On the distribution of inversive congruential pseudorandom numbers in parts of the period , 2001, Math. Comput..
[39] Wilfried Meidl,et al. On the Carlitz rank of permutation polynomials , 2009, Finite Fields Their Appl..
[40] Alina Ostafe,et al. On the Carlitz rank of permutations of Fq and pseudorandom sequences , 2014, J. Complex..
[41] Stephen B. Wicker,et al. Turbo Coding , 1998 .
[42] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[43] Rudolf Lide,et al. Finite fields , 1983 .
[44] Arne Winterhof,et al. Recent Results on Recursive Nonlinear Pseudorandom Number Generators - (Invited Paper) , 2010, SETA.
[45] Wilfried Meidl,et al. On the cycle structure of permutation polynomials , 2008, Finite Fields Their Appl..
[46] H. Faure. Good permutations for extreme discrepancy , 1992 .