Estimating the coherence of noise

Noise mechanisms in quantum systems can be broadly characterized as either coherent (i.e., unitary) or incoherent. For a given fixed average error rate, coherent noise mechanisms will generally lead to a larger worst-case error than incoherent noise. We show that the coherence of a noise source can be quantified by the unitarity, which we relate to the average change in purity averaged over input pure states. We then show that the unitarity can be efficiently estimated using a protocol based on randomized benchmarking that is efficient and robust to state-preparation and measurement errors. We also show that the unitarity provides a lower bound on the optimal achievable gate infidelity under a given noisy process.

[1]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[2]  R. Goodman,et al.  Symmetry, Representations, and Invariants , 2009 .

[3]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[4]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[5]  Jay M. Gambetta,et al.  Self-Consistent Quantum Process Tomography , 2012, 1211.0322.

[6]  R. Høegh-Krohn,et al.  Spectral Properties of Positive Maps on C*‐Algebras , 1978 .

[7]  David Poulin,et al.  Practical characterization of quantum devices without tomography. , 2011, Physical review letters.

[8]  Joel J. Wallman,et al.  Robust Characterization of Loss Rates. , 2015, Physical review letters.

[9]  Joel J. Wallman,et al.  Bounding quantum gate error rate based on reported average fidelity , 2015, 1501.04932.

[10]  Steven T. Flammia,et al.  Randomized benchmarking with confidence , 2014, 1404.6025.

[11]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[12]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[13]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[14]  Austin G. Fowler,et al.  Overcoming correlated noise in quantum systems: How mediocre clocks make good qubits , 2014 .

[15]  J. Cirac,et al.  Dividing Quantum Channels , 2006, math-ph/0611057.

[16]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[17]  Karol Życzkowski,et al.  Random quantum operations , 2008, 0804.2361.

[18]  David G. Cory,et al.  Progress toward scalable tomography of quantum maps using twirling-based methods and information hierarchies , 2010, 1003.2444.

[19]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[20]  John M. Martinis,et al.  Supplementary information for : Overcoming non-markovian noise in quantum systems : How mediocre clocks make good qubits , 2014 .

[21]  Joseph Emerson,et al.  Robust characterization of leakage errors , 2016 .

[22]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[23]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[24]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[25]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[26]  Yi-Kai Liu,et al.  Direct fidelity estimation from few Pauli measurements. , 2011, Physical review letters.

[27]  Robin Blume-Kohout,et al.  Gate fidelity fluctuations and quantum process invariants , 2009, 0910.1315.