Improved shortest path algorithms for nearly acyclic graphs
暂无分享,去创建一个
[1] Mikkel Thorup,et al. Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.
[2] Andrew V. Goldberg,et al. Shortest Path Algorithms: Engineering Aspects , 2001, ISAAC.
[3] Tadao Takaoka. Theory of Trinomial Heaps , 2000, COCOON.
[4] Robert E. Tarjan,et al. Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.
[5] Michael L. Fredman,et al. New Bounds on the Complexity of the Shortest Path Problem , 1976, SIAM J. Comput..
[6] Tadao Takaoka. Theory of 2-3 Heaps , 1999, COCOON.
[7] Philip N. Klein,et al. Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..
[8] Torben Hagerup,et al. Improved Shortest Paths on the Word RAM , 2000, ICALP.
[9] Jeffrey H. Kingston,et al. Are Fibonacci Heaps Optimal? , 1994, ISAAC.
[10] Tadao Takaoka. Sub-Cubic Cost Algorithms for the All Pairs Shortest Path Problem , 1995, WG.
[11] Kohei Noshita,et al. A Theorem on the Expected Complexity of Dijkstra's Shortest Path Algorithm , 1985, J. Algorithms.
[12] Philip M. Spira,et al. A New Algorithm for Finding all Shortest Paths in a Graph of Positive Arcs in Average Time 0(n2 log2n) , 1973, SIAM J. Comput..
[13] Uri Zwick,et al. Exact and Approximate Distances in Graphs - A Survey , 2001, ESA.
[14] Edsger W. Dijkstra,et al. A note on two problems in connexion with graphs , 1959, Numerische Mathematik.
[15] Robert E. Tarjan,et al. Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..
[16] Donald B. Johnson,et al. Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.
[17] Robert E. Tarjan,et al. Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.
[18] Kurt Mehlhorn,et al. Faster algorithms for the shortest path problem , 1990, JACM.
[19] Tadao Takaoka,et al. Shortest Path Algorithms for Nearly Acyclic Directed Graphs , 1998, Theor. Comput. Sci..
[20] Peter van Emde Boas,et al. Preserving Order in a Forest in Less Than Logarithmic Time and Linear Space , 1977, Inf. Process. Lett..
[21] Robert E. Tarjan,et al. Relaxed heaps: an alternative to Fibonacci heaps with applications to parallel computation , 1988, CACM.
[22] R. Tarjan. Amortized Computational Complexity , 1985 .
[23] Thomas H. Cormen,et al. Introduction to algorithms [2nd ed.] , 2001 .
[24] Tadao Takaoka,et al. Improved shortest path algorithms for nearly acyclic graphs , 2003, Theor. Comput. Sci..
[25] G. Dantzig. On the Shortest Route Through a Network , 1960 .
[26] A. Gibbons. Algorithmic Graph Theory , 1985 .
[27] Greg N. Frederickson,et al. Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..
[28] David R. Karger,et al. Finding the Hidden Path: Time Bounds for All-Pairs Shortest Paths , 1993, SIAM J. Comput..
[29] Alistair Moffat,et al. An All Pairs Shortest Path Algorithm with Expected Time O(n² log n) , 1987, SIAM J. Comput..