Syntheses and characterizations of in situ blended metallocence polyethylene/clay nanocomposites

Abstract In this paper, we report the preparation of in situ blends of metallocence polyethylene (mPE) with montmorillonite (clay). The polymerization activity of polyethylene decreases upon increasing the amount of the clay feed. The mPE nanocomposites still possess their original melting and crystallization temperatures, but the melting and crystallization enthalpies decrease upon increasing the clay content. In addition, the polymer interaction parameter between mPE and exfoliated clay sheets was calculated to be −0.204 based on a modified Kim–Bae equilibrium melting depression equation. All of the isothermal crystallization kinetics data fit well to the Avrami crystallization equation. We found that increasing the clay content results in a faster rate of crystallization, but pure mPE still crystallizes the fastest. Using a small amount of pretreated clay results in a more homogeneous and finer dispersion of the clay in the polymer matrix, as determined by wide-angle X-ray diffraction and transmission electron microscopy analyses. Both the values of T 1 ρ H in the solid-state NMR spectra of the fast and slow components show increment upon increasing the clay content, which indicates that either the mobile phase tends to increase its rigidity in the clay-containing system.

[1]  M. Kamal,et al.  Isothermal and nonisothermal crystallization of polyethylene , 1983 .

[2]  R. Vaia,et al.  Lattice model of polymer melt intercalation in organically-modified layered silicates , 1997 .

[3]  J. Hoffman,et al.  X‐Ray Study of Isothermal Thickening of Lamellae in Bulk Polyethylene at the Crystallization Temperature , 1965 .

[4]  R. Bharadwaj MODELING THE BARRIER PROPERTIES OF POLYMER-LAYERED SILICATE NANOCOMPOSITES , 2001 .

[5]  J. Hoffman,et al.  Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment , 1997 .

[6]  B. Goodall,et al.  POLYMERIZATION OF MULTICYCLIC MONOMERS USING ZIRCONOCENE CATALYSTS. EFFECTOF POLYMER MICROSTRUCTURE ON THERMAL PROPERTIES , 1994 .

[7]  S. Kuo,et al.  The Study of Miscibility and Hydrogen Bonding in Blends of Phenolics with Poly(e-caprolactone) , 2001 .

[8]  P. Montag,et al.  Elementary processes of the Ziegler catalysis, 7. Ethylene, α‐olefin and norbornene copolymerization with the stereorigid catalyst systems ipr[flucp]zrcl2/mao and me2si[ind]2zrcl2/mao , 1993 .

[9]  A. Akelah,et al.  Polymer-clay nanocomposites: Free-radical grafting of polystyrene on to organophilic montmorillonite interlayers , 1996, Journal of Materials Science.

[10]  M. Biswas,et al.  Recent Progress in Synthesis and Evaluation of Polymer-Montmorillonite Nanocomposites , 2001 .

[11]  E. Giannelis,et al.  Polymer-silicate nanocomposites : Model systems for confined polymers and polymer brushes , 1999 .

[12]  P. Flory Principles of polymer chemistry , 1953 .

[13]  W. Kaminsky,et al.  New polymers by homogenous zirconocene/aluminoxane catalysts , 1991 .

[14]  W. Kaminsky,et al.  Copolymerization of ethene and dimethanooctahydronaphthalene with aluminoxane containing catalysts , 1992 .

[15]  K. J. Packer,et al.  Nuclear magnetic resonance in solid ethylene/α-olefin copolymers: Relaxation, spin-diffusion and lamellar widths , 1987 .

[16]  Walter Kaminsky,et al.  New polymers by metallocene catalysis , 1996 .

[17]  Lang Xu,et al.  In Situ Synthesis of Polymer−Clay Nanocomposites from Silicate Gels , 1998 .

[18]  K. Friedrich,et al.  Composition-dependent properties of polyethylene/kaolin composites. I. Degree of crystallinity and melting behavior of polyethylene , 1999 .

[19]  Y. Bae,et al.  Phase behaviors of solid polymer electrolytes : applicability of an extended Debye-Hückel theory , 1999 .

[20]  K. J. Packer,et al.  The effects of morphology on 1H NMR spectra and relaxation in semicrystalline polyolefins , 1984 .

[21]  K. Friedrich,et al.  Composition‐dependent properties of polyethylene/Kaolin composites. III. Thermoelastic behavior of injection‐molded samples , 1999 .

[22]  G. Stevens,et al.  Structure correlated properties of metallocene catalysed polyethylenes by modulated temperature differential scanning calorimetry , 1999 .

[23]  Chan Eon Park,et al.  Real Time Exfoliation Behavior of Clay Layers in Epoxy−Clay Nanocomposites , 2003 .

[24]  Toshio Nishi,et al.  Melting Point Depression and Kinetic Effects of Cooling on Crystallization in Poly(vinylidene fluoride)-Poly(methyl methacrylate) Mixtures , 1975 .

[25]  S. Kuo,et al.  Miscibility and Hydrogen Bonding in Blends of Poly(vinylphenol-co-methyl methacrylate) with Poly(ethylene oxide) , 2001 .

[26]  J. Chien,et al.  Olefin copolymerization with metallocene catalysts. III. Supported metallocene/methylaluminoxane catalyst for olefin copolymerization , 1991 .

[27]  A. Balazs,et al.  Calculating Phase Diagrams of Polymer−Platelet Mixtures Using Density Functional Theory: Implications for Polymer/Clay Composites , 1999 .

[28]  P. M. Henrichs,et al.  Study of polyethylene by solid state NMR relaxation and spin diffusion , 1997 .