Exact PDF equations and closure approximations for advective-reactive transport

Mathematical models of advection–reaction phenomena rely on advective flow velocity and (bio) chemical reaction rates that are notoriously random. By using functional integral methods, we derive exact evolution equations for the probability density function (PDF) of the state variables of the advection–reaction system in the presence of random transport velocity and random reaction rates with rather arbitrary distributions. These PDF equations are solved analytically for transport with deterministic flow velocity and a linear reaction rate represented mathematically by a heterog eneous and strongly-correlated random field. Our analytical solution is then used to investigate the accuracy and robustness of the recently proposed large-eddy diffusivity (LED) closure approximation [1]. We find that the solution to the LED-based PDF equation, which is exact for uncorrelated reaction rates, is accurate even in the presence of strong correlations and it provides an upper bound of predictive uncertainty.

[1]  Gerald Rosen,et al.  Dynamics of probability distributions over classical fields , 1971 .

[2]  M. Dentz,et al.  Probability density functions for advective–reactive transport in radial flow , 2010 .

[3]  A. S. Monin,et al.  Statistical Fluid Mechanics, Vol. II , 1976 .

[4]  Xiu Yang,et al.  Adaptive ANOVA decomposition of stochastic incompressible and compressible flows , 2012, J. Comput. Phys..

[5]  Daniel M. Tartakovsky,et al.  Erratum: Transient flow in bounded randomly heterogeneous domains, 1, Exact conditional moment equations and recursive approximations (Water Resources Research (1998) 34:1 (1-12)) , 1999 .

[6]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[7]  K. Ritter,et al.  Simple Cubature Formulas with High Polynomial Exactness , 1999 .

[8]  Daniel M. Tartakovsky,et al.  Probability density functions for advective‐reactive transport with uncertain reaction rates , 2009 .

[9]  Daniel M. Tartakovsky,et al.  Uncertain Future of Hydrogeology , 2008 .

[10]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[11]  Daniele Venturi,et al.  Stochastic bifurcation analysis of Rayleigh–Bénard convection , 2010, Journal of Fluid Mechanics.

[12]  Divergence of solutions to perturbation-based advection–dispersion moment equations , 2011 .

[13]  G. Karniadakis,et al.  Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .

[14]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[15]  R. Kanwal Generalized Functions: Theory and Technique , 1998 .

[16]  Timothy Nigel Phillips,et al.  On the solution of the Fokker–Planck equation using a high-order reduced basis approximation , 2009 .

[17]  H. Ruben,et al.  Probability Content of Regions Under Spherical Normal Distributions, I , 1960 .

[18]  Zaitang Huang,et al.  Dynamics of stochastic Lorenz family of chaotic systems with jump , 2014, Journal of Mathematical Chemistry.

[19]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[20]  George E. Karniadakis,et al.  Time-dependent generalized polynomial chaos , 2010, J. Comput. Phys..

[21]  Seung Hyun Kim On the conditional variance and covariance equations for second-order conditional moment closure , 2002 .

[22]  P. Moschopoulos,et al.  The distribution function of a linear combination of chi-squares , 1984 .

[23]  Yanzhao Cao,et al.  International Journal of C 2009 Institute for Scientific Numerical Analysis and Modeling Computing and Information Anova Expansions and Efficient Sampling Methods for Parameter Dependent Nonlinear Pdes , 2022 .

[24]  S. Pope Mapping closures for turbulent mixing and reaction , 1991 .

[25]  S. M. Sadooghi-Alvandi,et al.  On the distribution of the sum of independent uniform random variables , 2009 .

[26]  Daniele Venturi,et al.  DIFFERENTIAL CONSTRAINTS FOR THE PROBABILITY DENSITY FUNCTION OF STOCHASTIC SOLUTIONS TO THE WAVE EQUATION , 2012 .

[27]  A. S. Monin,et al.  Equations of turbulent motion , 1967 .

[28]  Daniel M. Tartakovsky,et al.  Extension of “Transient flow in bounded randomly heterogeneous domains: 1, Exact conditional moment equations and recursive approximations” , 1999 .

[29]  M. Griebel Sparse Grids and Related Approximation Schemes for Higher Dimensional Problems , 2006 .

[30]  Anthony Nouy,et al.  Generalized spectral decomposition for stochastic nonlinear problems , 2009, J. Comput. Phys..

[31]  Iwao Hosokawa,et al.  Monin-Lundgren hierarchy versus the Hopf equation in the statistical theory of turbulence. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Stephen B. Popea Simple models of turbulent flows * , 2011 .

[33]  H. Rabitz,et al.  Efficient input-output model representations , 1999 .

[34]  R. Lewis,et al.  A space-time functional formalism for turbulence , 2011 .

[35]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[36]  Li Jun Jiang,et al.  An Adaptive Hierarchical Sparse Grid Collocation Method , 2014 .

[37]  D. Venturi A fully symmetric nonlinear biorthogonal decomposition theory for random fields , 2011 .

[38]  Robert H. Brown The Distribution Function of Positive Definite Quadratic Forms in Normal Random Variables , 1986 .

[39]  David M. Bradley,et al.  On the Distribution of the Sum of n Non-Identically Distributed Uniform Random Variables , 2002, math/0411298.

[40]  S. Pope PDF methods for turbulent reactive flows , 1985 .

[41]  Daniel M Tartakovsky,et al.  PDF equations for advective-reactive transport in heterogeneous porous media with uncertain properties. , 2011, Journal of contaminant hydrology.

[42]  George E. Karniadakis,et al.  Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation , 2002, J. Sci. Comput..

[43]  Daniel M. Tartakovsky,et al.  Unsaturated flow in heterogeneous soils with spatially distributed uncertain hydraulic parameters , 2003 .

[44]  Stephen B. Pope,et al.  Simple models of turbulent flowsa) , 2011 .

[45]  Huan Liu,et al.  A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables , 2009, Comput. Stat. Data Anal..

[46]  Daniele Venturi,et al.  Stochastic low-dimensional modelling of a random laminar wake past a circular cylinder , 2008, Journal of Fluid Mechanics.

[47]  Francisco Chinesta,et al.  Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models , 2010 .

[48]  Chen,et al.  Probability distribution of a stochastically advected scalar field. , 1989, Physical review letters.

[49]  George E. Karniadakis,et al.  Multi-element probabilistic collocation method in high dimensions , 2010, J. Comput. Phys..

[50]  T. Lundgren Distribution Functions in the Statistical Theory of Turbulence , 1967 .

[51]  Daniel M. Tartakovsky,et al.  Localization of Mean Flow and Apparent Transmissivity Tensor for Bounded Randomly Heterogeneous Aquifers , 2002 .

[52]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[53]  G. Dagan Flow and transport in porous formations , 1989 .

[54]  Daniele Venturi,et al.  Elsevier Editorial System(tm) for Journal of Computational Physics Manuscript Draft Title: New Evolution Equations for the Joint Response-excitation Probability Density Function of Stochastic Solutions to First-order Nonlinear Pdes New Evolution Equations for the Joint Response-excitation Probabilit , 2022 .

[55]  Herschel Rabitz,et al.  Global uncertainty assessments by high dimensional model representations (HDMR) , 2002 .

[56]  M. Dentz,et al.  Self-consistent four-point closure for transport in steady random flows. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Daniele Venturi,et al.  On proper orthogonal decomposition of randomly perturbed fields with applications to flow past a cylinder and natural convection over a horizontal plate , 2006, Journal of Fluid Mechanics.

[58]  R. Kraichnan Lagrangian‐History Closure Approximation for Turbulence , 1965 .

[59]  Rutherford Aris,et al.  Theory and application of hyperbolic systems of quasilinear equations , 1989 .

[60]  Peng Wang,et al.  Uncertainty quantification in kinematic-wave models , 2012, J. Comput. Phys..

[61]  Rudolf Friedrich,et al.  On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from Gaussianity , 2011, Journal of Fluid Mechanics.

[62]  A. Nouy A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations , 2010 .

[63]  H. Ruben,et al.  Probability Content of Regions Under Spherical Normal Distributions, IV: The Distribution of Homogeneous and Non-Homogeneous Quadratic Functions of Normal Variables , 1961 .

[64]  Alexandre M. Tartakovsky,et al.  Divergence of solutions to solute transport moment equations , 2008 .

[65]  R. Aris First-order partial differential equations , 1987 .

[66]  G. Karniadakis,et al.  A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[67]  A. Nouy Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .

[68]  N. L. Johnson,et al.  SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES, I. CENTRAL CASE, , 1967 .

[69]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..