PSSNet: Planarity-sensible Semantic Segmentation of Large-scale Urban Meshes

[1]  Clayton D. Scott,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Jian Yang,et al.  Superpoint Network for Point Cloud Oversegmentation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[3]  Siddhartha Chaudhuri,et al.  BuildingNet: Learning to Label 3D Buildings , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[4]  Li Nan Easy3D: a lightweight, easy-to-use, and efficient C++ library for processing and rendering 3D data , 2021, J. Open Source Softw..

[5]  A. Mian,et al.  Picasso: A CUDA-based Library for Deep Learning over 3D Meshes , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Federico Tombari,et al.  SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D Sequences , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Bas Boom,et al.  SUM: A Benchmark Dataset of Semantic Urban Meshes , 2021, ArXiv.

[8]  J. D. Wegner,et al.  The Hessigheim 3D (H3D) Benchmark on Semantic Segmentation of High-Resolution 3D Point Clouds and Textured Meshes from UAV LiDAR and Multi-View-Stereo , 2021, ArXiv.

[9]  Lin Gao,et al.  3D-FUTURE: 3D Furniture Shape with TextURE , 2020, International Journal of Computer Vision.

[10]  Bastian Leibe,et al.  DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Mohammed Bennamoun,et al.  Deep Learning for 3D Point Clouds: A Survey , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[13]  A. Markham,et al.  RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Lin Gao,et al.  SDM-NET , 2019, ACM Trans. Graph..

[15]  Long Quan,et al.  Cross-Atlas Convolution for Parameterization Invariant Learning on Textured Mesh Surface , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Leonidas J. Guibas,et al.  KPConv: Flexible and Deformable Convolution for Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[17]  Mohamed Boussaha,et al.  Point Cloud Oversegmentation With Graph-Structured Deep Metric Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Leonidas J. Guibas,et al.  TextureNet: Consistent Local Parametrizations for Learning From High-Resolution Signals on Meshes , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Cheng Wang,et al.  Toward better boundary preserved supervoxel segmentation for 3D point clouds , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[20]  François Goulette,et al.  Semantic Classification of 3D Point Clouds with Multiscale Spherical Neighborhoods , 2018, 2018 International Conference on 3D Vision (3DV).

[21]  Kun Yu,et al.  DenseASPP for Semantic Segmentation in Street Scenes , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[22]  Martin Simonovsky,et al.  Large-Scale Point Cloud Semantic Segmentation with Superpoint Graphs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[23]  Gustavo Patow,et al.  Skyline-based geometric simplification for urban solar analysis , 2017, Graph. Model..

[24]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[25]  George Vosselman,et al.  Contextual segment-based classification of airborne laser scanner data , 2017 .

[26]  Nikos Komodakis,et al.  Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Anath Fischer,et al.  Graph Based Over-Segmentation Methods for 3D Point Clouds , 2017, Comput. Vis. Image Underst..

[28]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Konrad Schindler,et al.  FAST SEMANTIC SEGMENTATION OF 3D POINT CLOUDS WITH STRONGLY VARYING DENSITY , 2016 .

[30]  Ravi Peters,et al.  Robust approximation of the Medial Axis Transform of LiDAR point clouds as a tool for visualisation , 2016, Comput. Geosci..

[31]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Filip Biljecki,et al.  Applications of 3D City Models: State of the Art Review , 2015, ISPRS Int. J. Geo Inf..

[33]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Richard S. Zemel,et al.  Gated Graph Sequence Neural Networks , 2015, ICLR.

[35]  Florent Lafarge,et al.  LOD Generation for Urban Scenes , 2015, ACM Trans. Graph..

[36]  Stefan Hinz,et al.  CONTEXTUAL CLASSIFICATION OF POINT CLOUD DATA BY EXPLOITING INDIVIDUAL 3D NEIGBOURHOODS , 2015 .

[37]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[38]  Sameer Saran,et al.  CityGML at semantic level for urban energy conservation strategies , 2015, Ann. GIS.

[39]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[40]  Boris Jutzi,et al.  Feature relevance assessment for the semantic interpretation of 3D point cloud data , 2013 .

[41]  Florentin Wörgötter,et al.  Voxel Cloud Connectivity Segmentation - Supervoxels for Point Clouds , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Ke Xie,et al.  A search-classify approach for cluttered indoor scene understanding , 2012, ACM Trans. Graph..

[43]  J. Demantké,et al.  DIMENSIONALITY BASED SCALE SELECTION IN 3D LIDAR POINT CLOUDS , 2012 .

[44]  Florent Lafarge,et al.  Creating Large-Scale City Models from 3D-Point Clouds: A Robust Approach with Hybrid Representation , 2012, International Journal of Computer Vision.

[45]  Rama Chellappa,et al.  Entropy rate superpixel segmentation , 2011, CVPR 2011.

[46]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[47]  Reinhard Klein,et al.  Efficient RANSAC for Point‐Cloud Shape Detection , 2007, Comput. Graph. Forum.

[48]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[49]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[50]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[51]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[52]  Daniel Cohen-Or,et al.  MeshCNN: a network with an edge , 2019, ACM Trans. Graph..

[53]  Florent Lafarge,et al.  Semantic segmentation of 3D textured meshes for urban scene analysis , 2017 .

[54]  Juha Hyyppä,et al.  ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences , 2016 .

[55]  Sang Won Bae,et al.  3D medial axis point approximation using nearest neighbors and the normal field , 2011, The Visual Computer.

[56]  Thomas Melzer,et al.  Non-parametric segmentation of ALS point clouds using mean shift , 2007 .

[57]  R. Reulke,et al.  Remote Sensing and Spatial Information Sciences , 2005 .

[58]  G. Sithole,et al.  Recognising structure in laser scanning point clouds , 2004 .

[59]  Godfried T. Toussaint,et al.  Relative neighborhood graphs and their relatives , 1992, Proc. IEEE.

[60]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2022 .