Thirty-two Goldbach Variations
暂无分享,去创建一个
[1] David M. Bradley. Duality for finite multiple harmonic q-series , 2005, Discret. Math..
[2] Jonathan M. Borwein,et al. The evaluation of character Euler double sums , 2008 .
[3] G. Hardy. Prolegomena To a Chapter on Inequalities , 2022 .
[4] C. Markett,et al. Triple Sums and the Riemann Zeta Function , 1994 .
[5] M. Waldschmidt,et al. Multiple Polylogarithms: An Introduction , 2002 .
[6] Michel Waldschmidt,et al. Valeurs zêta multiples. Une introduction , 2000 .
[7] M. V. Subbarao,et al. TRANSFORMATION FORMULAE FOR MULTIPLE SERIES , 1984 .
[8] Richard E. Crandall,et al. Fast evaluation of multiple zeta sums , 1998, Math. Comput..
[9] J. Steele. The Cauchy–Schwarz Master Class: References , 2004 .
[10] Don Zagier,et al. Special values and functional equations of polylogarithms , 1991 .
[11] Jonathan M. Borwein,et al. Special values of multiple polylogarithms , 1999, math/9910045.
[12] Andrew Granville,et al. Analytic Number Theory: A Decomposition of Riemann's Zeta-Function , 1997 .
[13] Niels Nielsen. Recherches sur des généralisations d'une fonction de Legendre et d'Abel , 1904 .
[14] D. Bradley. Multiple $q$-Zeta Values , 2004, math/0402093.
[15] Jonathan M. Borwein,et al. A Class of Dirichlet Series Integrals , 2007, Am. Math. Mon..
[16] David M. Bradley,et al. Resolution of Some Open Problems Concerning Multiple Zeta Evaluations of Arbitrary Depth , 2003, Compositio Mathematica.
[17] E. Kummer,et al. Über die hypergeometrische Reihe . , 1836 .
[18] Nicolai Reshetikhin,et al. Quantum Groups , 1993 .
[19] David J. Broadhurst,et al. Polylogarithmic ladders, hypergeometric series and the ten millionth digits of ?(3) and ?(5) , 1998 .
[20] S. Chowla. Some infinite series , 1935 .
[21] T. Apostol. Introduction to analytic number theory , 1976 .
[23] F. Beukers. A Note on the Irrationality of ζ(2) and ζ(3) , 1979 .
[24] R. Sitaramachandrarao. A formula of S. Ramanujan , 1987 .
[25] Philippe Flajolet,et al. Euler Sums and Contour Integral Representations , 1998, Exp. Math..
[26] Michael E. Hoffman,et al. Multiple harmonic series. , 1992 .
[27] J. Borwein,et al. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity , 1998 .
[28] Edward B. Burger,et al. Making Transcendence Transparent , 2004 .
[29] K. Boyadzhiev. EVALUATION OF EULER-ZAGIER SUMS , 2001 .
[30] David M. Bradley,et al. A q-analog of Euler's decomposition formula for the double zeta function , 2005, International Journal of Mathematics and Mathematical Sciences.
[31] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[32] David M. Bradley,et al. Some multi-set inclusions associated with shuffle convolutions and multiple zeta values , 2003, Eur. J. Comb..
[33] Pierre Cartier,et al. Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents , 2001 .
[34] E. State. A one-sided summatory function , 1976 .
[35] D. Zagier. Values of Zeta Functions and Their Applications , 1994 .
[36] L. Lewin. Structural Properties of Polylogarithms , 1991 .
[37] Leonard Lewin,et al. Polylogarithms and Associated Functions , 1981 .
[38] Partition Identities for the Multiple Zeta Function , 2004, math/0402091.
[39] Вадим Валентинович Зудилин,et al. Алгебраические соотношения для кратных дзета-значений@@@Algebraic relations for multiple zeta values , 2003 .
[40] Ravi P. Agarwal. Generalized hypergeometric series , 1963 .
[41] Wadim Zudilin,et al. Algebraic relations for multiple zeta values , 2003 .
[42] B. Berndt. Ramanujan’s Notebooks: Part V , 1997 .
[43] Yasuo Ohno,et al. A Generalization of the Duality and Sum Formulas on the Multiple Zeta Values , 1999 .
[44] D. Bradley,et al. Multiple Polylogarithms: A Brief Survey , 2003, math/0310062.
[45] Gert Almkvist,et al. Borwein and Bradley's Apérv-Like Formulae for ζ(4n + 3) , 1999, Exp. Math..
[46] Man-Duen Choi. TRICKS OR TREATS WITH THE HILBERT MATRIX , 1983 .
[47] Jonathan M. Borwein,et al. Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k , 1996, Electron. J. Comb..
[48] David M. Bradley,et al. The Algebra and Combinatorics of Shuffles and Multiple Zeta Values , 2003, J. Comb. Theory, Ser. A.
[49] W. Chu. Hypergeometric series and the Riemann zeta function , 1997 .
[50] D. Bradley. On the Sum Formula for Multiple $q$-Zeta Values , 2004, math/0411274.
[51] Paul Bracken,et al. Euler's Formula for Zeta Function Convolutions: 10754 , 2001, Am. Math. Mon..
[52] J. Borwein,et al. Explicit evaluation of Euler sums , 1995 .
[53] Jonathan M. Borwein,et al. Experimentation in Mathematics: Computational Paths to Discovery , 2004 .
[54] William Dunham. Euler: The Master of Us All , 1999 .
[55] Stirling Numbers, Central Factorial Numbers, and Representations of the Riemann Zeta Function , 1991 .
[56] Victor H. Moll,et al. The evaluation of Tornheim double sums. Part 2 , 2005, math/0505647.
[57] Richard E. Crandall,et al. On the Evaluation of Euler Sums , 1994, Exp. Math..
[58] Julian Havil. Gamma: Exploring Euler's Constant , 2003 .
[59] Jonathan M. Borwein,et al. Mathematics by experiment - plausible reasoning in the 21st century , 2003 .
[60] K. Boyadzhiev. CONSECUTIVE EVALUATION OF EULER SUMS , 2002 .
[61] Jonathan M. Borwein,et al. Combinatorial Aspects of Multiple Zeta Values , 1998, Electron. J. Comb..
[62] Victor H. Moll,et al. The evaluation of Tornheim double sums. Part 2 , 2008 .