Thirty-two Goldbach Variations

We give thirty-two diverse proofs of a small mathematical gem — the fundamental Euler sum identity We also discuss various generalizations for multiple harmonic (Euler) sums and some of their many connections, thereby illustrating both the wide variety of techniques fruitfully used to study such sums and the attraction of their study.

[1]  David M. Bradley Duality for finite multiple harmonic q-series , 2005, Discret. Math..

[2]  Jonathan M. Borwein,et al.  The evaluation of character Euler double sums , 2008 .

[3]  G. Hardy Prolegomena To a Chapter on Inequalities , 2022 .

[4]  C. Markett,et al.  Triple Sums and the Riemann Zeta Function , 1994 .

[5]  M. Waldschmidt,et al.  Multiple Polylogarithms: An Introduction , 2002 .

[6]  Michel Waldschmidt,et al.  Valeurs zêta multiples. Une introduction , 2000 .

[7]  M. V. Subbarao,et al.  TRANSFORMATION FORMULAE FOR MULTIPLE SERIES , 1984 .

[8]  Richard E. Crandall,et al.  Fast evaluation of multiple zeta sums , 1998, Math. Comput..

[9]  J. Steele The Cauchy–Schwarz Master Class: References , 2004 .

[10]  Don Zagier,et al.  Special values and functional equations of polylogarithms , 1991 .

[11]  Jonathan M. Borwein,et al.  Special values of multiple polylogarithms , 1999, math/9910045.

[12]  Andrew Granville,et al.  Analytic Number Theory: A Decomposition of Riemann's Zeta-Function , 1997 .

[13]  Niels Nielsen Recherches sur des généralisations d'une fonction de Legendre et d'Abel , 1904 .

[14]  D. Bradley Multiple $q$-Zeta Values , 2004, math/0402093.

[15]  Jonathan M. Borwein,et al.  A Class of Dirichlet Series Integrals , 2007, Am. Math. Mon..

[16]  David M. Bradley,et al.  Resolution of Some Open Problems Concerning Multiple Zeta Evaluations of Arbitrary Depth , 2003, Compositio Mathematica.

[17]  E. Kummer,et al.  Über die hypergeometrische Reihe . , 1836 .

[18]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[19]  David J. Broadhurst,et al.  Polylogarithmic ladders, hypergeometric series and the ten millionth digits of ?(3) and ?(5) , 1998 .

[20]  S. Chowla Some infinite series , 1935 .

[21]  T. Apostol Introduction to analytic number theory , 1976 .

[23]  F. Beukers A Note on the Irrationality of ζ(2) and ζ(3) , 1979 .

[24]  R. Sitaramachandrarao A formula of S. Ramanujan , 1987 .

[25]  Philippe Flajolet,et al.  Euler Sums and Contour Integral Representations , 1998, Exp. Math..

[26]  Michael E. Hoffman,et al.  Multiple harmonic series. , 1992 .

[27]  J. Borwein,et al.  Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity , 1998 .

[28]  Edward B. Burger,et al.  Making Transcendence Transparent , 2004 .

[29]  K. Boyadzhiev EVALUATION OF EULER-ZAGIER SUMS , 2001 .

[30]  David M. Bradley,et al.  A q-analog of Euler's decomposition formula for the double zeta function , 2005, International Journal of Mathematics and Mathematical Sciences.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  David M. Bradley,et al.  Some multi-set inclusions associated with shuffle convolutions and multiple zeta values , 2003, Eur. J. Comb..

[33]  Pierre Cartier,et al.  Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents , 2001 .

[34]  E. State A one-sided summatory function , 1976 .

[35]  D. Zagier Values of Zeta Functions and Their Applications , 1994 .

[36]  L. Lewin Structural Properties of Polylogarithms , 1991 .

[37]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[38]  Partition Identities for the Multiple Zeta Function , 2004, math/0402091.

[39]  Вадим Валентинович Зудилин,et al.  Алгебраические соотношения для кратных дзета-значений@@@Algebraic relations for multiple zeta values , 2003 .

[40]  Ravi P. Agarwal Generalized hypergeometric series , 1963 .

[41]  Wadim Zudilin,et al.  Algebraic relations for multiple zeta values , 2003 .

[42]  B. Berndt Ramanujan’s Notebooks: Part V , 1997 .

[43]  Yasuo Ohno,et al.  A Generalization of the Duality and Sum Formulas on the Multiple Zeta Values , 1999 .

[44]  D. Bradley,et al.  Multiple Polylogarithms: A Brief Survey , 2003, math/0310062.

[45]  Gert Almkvist,et al.  Borwein and Bradley's Apérv-Like Formulae for ζ(4n + 3) , 1999, Exp. Math..

[46]  Man-Duen Choi TRICKS OR TREATS WITH THE HILBERT MATRIX , 1983 .

[47]  Jonathan M. Borwein,et al.  Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k , 1996, Electron. J. Comb..

[48]  David M. Bradley,et al.  The Algebra and Combinatorics of Shuffles and Multiple Zeta Values , 2003, J. Comb. Theory, Ser. A.

[49]  W. Chu Hypergeometric series and the Riemann zeta function , 1997 .

[50]  D. Bradley On the Sum Formula for Multiple $q$-Zeta Values , 2004, math/0411274.

[51]  Paul Bracken,et al.  Euler's Formula for Zeta Function Convolutions: 10754 , 2001, Am. Math. Mon..

[52]  J. Borwein,et al.  Explicit evaluation of Euler sums , 1995 .

[53]  Jonathan M. Borwein,et al.  Experimentation in Mathematics: Computational Paths to Discovery , 2004 .

[54]  William Dunham Euler: The Master of Us All , 1999 .

[55]  Stirling Numbers, Central Factorial Numbers, and Representations of the Riemann Zeta Function , 1991 .

[56]  Victor H. Moll,et al.  The evaluation of Tornheim double sums. Part 2 , 2005, math/0505647.

[57]  Richard E. Crandall,et al.  On the Evaluation of Euler Sums , 1994, Exp. Math..

[58]  Julian Havil Gamma: Exploring Euler's Constant , 2003 .

[59]  Jonathan M. Borwein,et al.  Mathematics by experiment - plausible reasoning in the 21st century , 2003 .

[60]  K. Boyadzhiev CONSECUTIVE EVALUATION OF EULER SUMS , 2002 .

[61]  Jonathan M. Borwein,et al.  Combinatorial Aspects of Multiple Zeta Values , 1998, Electron. J. Comb..

[62]  Victor H. Moll,et al.  The evaluation of Tornheim double sums. Part 2 , 2008 .